The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Eric Steven Raymond

The Cathedral and the Bazaar

ABSTRACT

I anatomize a successful open-source project, fetchmail, that
was run as a deliberate test of the surprising theories about
software engineering suggested by the history of Linux. I discuss
these theories in terms of two fundamentally different
development styles, the "“cathedral" model of most of the
commercial world versus the “"bazaar" model of the Linux world.
I show that these models derive from opposing assumptions about
the nature of the software-debugging task. I then make a sustained
argument from the Linux experience for the proposition that
“Given enough eyeballs, all bugs are shallow™', suggest productive
analogies with other self-correcting systems of selfish agents, and
conclude with some exploration of the implications of this insight
for the future of software.

This is version 3.0

Copyright © 2000 Eric S. Raymond

Permission is granted to copy, distribute and/or modify this document under the
terms of the Open Publication License, version 2.0.

$Date: 2002/08/02 09:02:14 $

Source: http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/

Open culture

<t
o
il
&
3
3
B
T

A
.
e
Ed
=)
T

&

Linux A4 S (R4 T — 20 TR TR AL .
A BIE— PRI HIHET H fetchmail il 1 X L3
W, FFAEILGEAT « X B IR T MARA_ AR R
B REEmLIN E A A R R0 Linux 5
He MR - FATRER], XA AR TR R L
VEADAST IR AR JHXS SLADMEGR - FHE A Linux 142858
A, e ARRREW L, FrE RREIF R R EET —
PMUFRHERTIEIE; B ESHEH H EMAHEM AR
G E AR SUHEMZAL - &5, BEFE T DRI AR
KAV HIFE R -

BEITHCUE SR = AR vl
BESUHESUE R OPL v2.0 7 - BRI ETIHE
http://rl.rockiestech.com/node/101

HGIHE R -

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1
#

ﬁfﬂ#ﬁﬁﬂ@Wﬁﬁim JERAE A 1S BEET AR
Fo &Kﬂﬂlfﬁ ST B R A R ~ A RINLIE
bR 54 %Hﬁiﬁﬁfljjﬁﬁifﬁﬁ%DLQZELﬁ INTTHEIRAER TR 2
—A&%%ﬁ%M%%EE%ﬁHAm Hip . HAFRZOE
R MR A AT RN - AT E

A«ﬁﬁﬁﬂﬁ%»%%ﬁﬁﬁ%%ﬁﬁﬁi%%%
HEFES I —E o - R RLFTEIH—, WOE&E DA
25 FHRT X IR habpi F35%; ARIEECHTINTE SR
A, W BRI R SORAIE I T — N, SR TIREE
o FXHFMRARE, BNTAEAEFILEIET —Lghfy
VAR, JRAEERFROA VRS B MR GRIEA) 7@ - SR
AR AR R AN T HBR T KFANETfa], HrR s
IR A MR o B k7 Bl & AR R ISR IRk
e, FIRHEXGE KK FAE KA R TIE « XM RAE
BRNEERE . SCEMEGHER 7>, A AR eI R
FRCAS HH SERL o Bl A7 feiyue999 « [8T -~ lawrence ~ bingo 55
N (BA——1RK) HIFEIE -

BRIFIE ~ A~ RARFICATE, F 5 RLX DI HE H
FK A MIHE http://rl. rockiestech.com/node/101 -

[http://rl.rockiestech. com]

WEITBOUL SR, IR T IR st & SOt

2
B &
The Cathedral and the Bazaar
KRBT ER
The Mail Must Get Through
BRI oo 5
The Importance of Having Users
FAP BB B oo 10
Release Early, Release Often
FLRAT ~ TR oo 12
How Many Eyeballs Tame Complexity
BHEZDA EEE‘G@ MARELZLIE oo s 17
When Is a Rose Not a Rose?
EFREEZER oo 22
Popclient becomes Fetchmail
Popclient 28 A% T Fetchmail..........ccovoveiveueeeeeeeeeeieeeeeeeenn, 24
Fetchmail Grows Up
Fetchmail F R T oo 29
A Few More Lessons from Fetchmail
Fetchmail T R E T JLEERR oo 31
Necessary Preconditions for the Bazaar Style
TR RS T ELFTHR oo, 34
The Social Context of Open-Source Software
FFIRERAE B R TEIR e 37
On Management and the Maginot Line
KT BTG ETETT R o 43
Epilog: Netscape Embraces the Bazaar
JEIE: PIRHGI TR oo 51
INOEES. .ttt et s 54
Bibliography........ccceieiiiiiieie e 58

Acknowledgements..........cc.eeeviiieiiiiiieiiiieeee e 59

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Linux is subversive. Who would have thought even five
years ago (1991) that a world-class operating system could
coalesce as if by magic out of part-time hacking by several
thousand developers scattered all over the planet, connected only
by the tenuous strands of the Internet?

Certainly not I. By the time Linux swam onto my radar
screen in early 1993, I had already been involved in Unix and
open-source development for ten years. I was one of the first GNU
contributors in the mid-1980s. I had released a good deal of open-
source software onto the net, developing or co-developing several
programs (nethack, Emacs's VC and GUD modes, xlife, and
others) that are still in wide use today. I thought I knew how it was
done.

Linux overturned much of what I thought I knew. I had been
preaching the Unix gospel of small tools, rapid prototyping and
evolutionary programming for years. But I also believed there was
a certain critical complexity above which a more centralized, a
priori approach was required. I believed that the most important
software (operating systems and really large tools like the Emacs
programming editor) needed to be built like cathedrals, carefully
crafted by individual wizards or small bands of mages working in
splendid isolation, with no beta to be released before its time.

Linus Torvalds's style of development—release early and
often, delegate everything you can, be open to the point of
promiscuity—came as a surprise. No quiet, reverent cathedral-
building here—rather, the Linux community seemed to resemble a
great babbling bazaar of differing agendas and approaches (aptly
symbolized by the Linux archive sites, who'd take submissions
from anyone) out of which a coherent and stable system could
seemingly emerge only by a succession of miracles.

Linux BEABHER . B2 HELIET(1991), EEAEEE)
AU R BRE) LT 27T & & WL R, (R4 i A
BRI M2, BEMBEAR — Bt 35 al— ML R BRI E R ST
Hg?

RIEART - 7 1993 4] Linux 51 B AR BIES
5, T AL Unix FIFF BRI Z 8 7+ 7T - 3,
& 80 ERHHIRKENI GNUFAE L — HRELEM LR
AT Y —E 8, EEFLZSMEFLZFILTERS K
LT 2 FH B (nethack, Emacs I VC 1 GUD
=, xlife 1 HE) . WEEHBETT -

Linux B T iF 2R UANRERN R . ZHERK—EE
/MU T E - POl A RFE R Unix i & - H3E
WHE—TUEE T —ERNEREEEMT EEE i
BT RIEE . BAGEREENTME (BIERSIF Emacs
ZRMRATER) FEGRBCGE—HERERE: SiMpE
ANEREMNZERSITHRZEY; BHERE] beta A -

PRENET-FEFLZZ (Linus Torvalds) HIFF & XA& 4 AT
. RERZMAM, [IREMEUZRRNE, FilE T2
MEPIFRERE o X BRUE S RECE LA Linux fRIX
FAR— TR AN R RE A T 1 ROME 22 KRBT (Linux U344
vl S TR — NIRRT, AR N ROVE SRR o —
BT R NIX L= A B R H R E— R &

J\/Lj-{o

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

The fact that this bazaar style seemed to work, and work
well, came as a distinct shock. As I learned my way around, I
worked hard not just at individual projects, but also at trying to
understand why the Linux world not only didn't fly apart in
confusion but seemed to go from strength to strength at a speed
barely imaginable to cathedral-builders.

By mid-1996 I thought I was beginning to understand.
Chance handed me a perfect way to test my theory, in the form of
an open-source project that I could consciously try to run in the
bazaar style. So I did—and it was a significant success.

This is the story of that project. I'll use it to propose some
aphorisms about effective open-source development. Not all of
these are things I first learned in the Linux world, but we'll see
how the Linux world gives them particular point. If I'm correct,
they'll help you understand exactly what it is that makes the Linux
community such a fountain of good software—and, perhaps, they
will help you become more productive yourself.

LERXA R NS HIBER EFAS—AE— 14
KRR . ARERERES, FACE T HIRIHE
1M B2 Z3E A 4 Linux A EIREL 55 BT
T DA O B 383 1 TR U R A B PR R

21199 6FF, FHEIITIREE T - T/ T — 0
FHHEIRHEFRIL S, — DA IAERIRIA T ENREAZ
FTHTFRIE « BOXHEM T —25RARF R -

X BRI X I H A - BoRF R EoRER 2
THREAFEROT Z HAEHE - EN1HFAE2FRIEA Linux 5,
BEATZE BN EATFALE Linux tFHEREE . R E
EMRE, BT RBEEFERRRE T 2 515 Linux #E XA
AR —0F, € e EEING
Ao

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

The Mail Must Get Through

Since 1993 I'd been running the technical side of a small
free-access Internet service provider called Chester County
InterLink (CCIL) in West Chester, Pennsylvania. I co-founded
CCIL and wrote our unique multiuser bulletin-board software—
you can check it out by telnetting to locke.ccil.org. Today it
supports almost three thousand users on thirty lines. The job
allowed me 24-hour-a-day access to the net through CCIL's 56K
line—in fact, the job practically demanded it!

I had gotten quite used to instant Internet email. I found
having to periodically telnet over to locke to check my mail
annoying. What I wanted was for my mail to be delivered on snark
(my home system) so that I would be notified when it arrived and
could handle it using all my local tools.

The Internet's native mail forwarding protocol, SMTP
(Simple Mail Transfer Protocol), wouldn't suit, because it works
best when machines are connected full-time, while my personal
machine isn't always on the Internet, and doesn't have a static IP
address. What I needed was a program that would reach out over
my intermittent dialup connection and pull across my mail to be
delivered locally. I knew such things existed, and that most of
them used a simple application protocol called POP (Post Office
Protocol). POP is now widely supported by most common mail
clients, but at the time, it wasn't built in to the mail reader I was
using.

I needed a POP3 client. So I went out on the Internet and
found one. Actually, I found three or four. I used one of them for a
while, but it was missing what seemed an obvious feature, the
ability to hack the addresses on fetched mail so replies would
work properly.

oS A ol 20 3R 3

M 1993 LK, FAEMTTE MR — KRR
7 W25 AR S5 H/INAF] CCIL FIFAR TAE - FebhFE a1 T
CCIL, 5 TIMNMKMZ A IRIRIK A —1 0w LUA
telnet i##% locke.ccil.org ®ix—F « S REHE=FTKL L
XFPE=TZH A - XMy TAERVFFGET CCIL B 56K K%L
B BRI PH/NS E R ——HSE X TAESSE FERIX

B E A ST B BN AST A BB X IR o 3 & FRANRS 3 22
telnet &3 AT RS 2alocke " F BT R AARAA A -« FAEZER)
IR AR £ 2 T R Bl essnark” £, X R AT LA
FERMEA RIS 2B AN, A TEROHETE .

BB RO RIS A MY SMTP NEA, RN ERET
N ZR LB TR, MR AVLES H A BAER
b, WIRE RSP HYE . REE —MEFAERIKRE
EMAHEERERI RS ae L2, EFE N B H A mE A B]
Ko WINEEXERROGAE, ZEMEH R LR AT
POP. HIfEL U H R 7 bl AR EX 4T S0 HF POP, {HFR
A, B ATET AR s

HFHFE— POP3 & Fumik i - Fr AT BRI b+
TN FX L, BREPT=ZWA . HFRA—DNRAT B
BrE, (BEeb T —1EERIRIEIIRE: FREEEmL)
K5 Hht LUE ERAEIE .

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

The problem was this: suppose someone named ‘joe' on
locke sent me mail. If I fetched the mail to snark and then tried to
reply to it, my mailer would cheerfully try to ship it to a
nonexistent ‘joe' on snark. Hand-editing reply addresses to tack on
<(@ccil.org> quickly got to be a serious pain.

This was clearly something the computer ought to be doing
for me. But none of the existing POP clients knew how! And this
brings us to the first lesson:

1. Every good work of software starts by scratching a
developer's personal itch.

Perhaps this should have been obvious (it's long been
proverbial that *“Necessity is the mother of invention") but too
often software developers spend their days grinding away for pay
at programs they neither need nor love. But not in the Linux world
—which may explain why the average quality of software
originated in the Linux community is so high.

So, did I immediately launch into a furious whirl of coding
up a brand-new POP3 client to compete with the existing ones?
Not on your life! I looked carefully at the POP utilities I had in
hand, asking myself **Which one is closest to what I want?"
Because:

2. Good programmers know what to write. Great ones know
what to rewrite (and reuse).

While I don't claim to be a great programmer, [try to imitate
one. An important trait of the great ones is constructive laziness.
They know that you get an A not for effort but for results, and that
it's almost always easier to start from a good partial solution than
from nothing at all.

FIARREAS: [Biftfocke” | —/Mj“ 7o i) A L85
T MARIERE nark” |, REREEE, R
IFRF 2B B4 S P IS AR A nark” = — 1 J6 R
FAEEI TR BT TSR AT (7 5 0 R Bt
BT (R

SLARIX R AR 0 - (ERBUH) POP % Pl
BERRE— 2 ARITHR T E— .

1) B MR T T R E RN
Ak

BERFRRMREAN (—HHRET R FERLY
28") | (BSEITRN R KSR AR (1A
B R E AR T H - RICTHE - (A7 Linux B
FLIRE T AO—— K VBRE T 0t 4 LinuxREE 72 O
Rclis =A]

A, B35 LSBT — R NRIER S — o]
H POP3 & P13 SR T2 ST 2 | RAFADE
TREFIFHORLL POP TR, H I — AR B RE
e "

2) WHREFRFIES 4 o FHRIVERF HAENS
(FIESEM) 4.

BARBAHENHRNREF A, HEE DR HERIRE
FPil o R B — 2 20 R R IS E RO - AT 1 RAE R
FRMZERAZERE, MHEN— MRS T R IRE
NETRER ZIRZ -

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Linus Torvalds, for example, didn't actually try to write
Linux from scratch. Instead, he started by reusing code and ideas
from Minix, a tiny Unix-like operating system for PC clones.
Eventually all the Minix code went away or was completely
rewritten—but while it was there, it provided scaffolding for the
infant that would eventually become Linux.

In the same spirit, I went looking for an existing POP utility
that was reasonably well coded, to use as a development base.

The source-sharing tradition of the Unix world has always
been friendly to code reuse (this is why the GNU project chose
Unix as a base OS, in spite of serious reservations about the OS
itself). The Linux world has taken this tradition nearly to its
technological limit; it has terabytes of open sources generally
available. So spending time looking for some else's almost-good-
enough is more likely to give you good results in the Linux world
than anywhere else.

And it did for me. With those I'd found earlier, my second
search made up a total of nine candidates—fetchpop, PopTart, get-
mail, gwpop, pimp, pop-perl, popc, popmail and upop. The one I
first settled on was “fetchpop' by Seung-Hong Oh. I put my
header-rewrite feature in it, and made various other improvements
which the author accepted into his 1.9 release.

A few weeks later, though, I stumbled across the code for
popclient by Carl Harris, and found I had a problem. Though
fetchpop had some good original ideas in it (such as its
background-daemon mode), it could only handle POP3 and was
rather amateurishly coded (Seung-Hong was at that time a bright
but inexperienced programmer, and both traits showed). Carl's
code was better, quite professional and solid, but his program
lacked several important and rather tricky-to-implement fetchpop

7

DIARGNET-FE L2 R, b sEfr A RNk E
Linux. fHf, MAFETEE Minik——"1/NNETE PC L
L HIZE UNIX RE—RCEAER - &E&PTE Minix B
BEHERSES T —HAERPIMEL, Minix 24t T A1
AN JE AR Linux BOETAE LR R F28 .

BIEFEEEREE, RELZEIHR—ICHR . 5545
1 POP 27 2RAE R FF & A -

UNIX tt 5 B fiR A S = 2 40— B U B AR A 1
(XM GNU T H RE N UNIX IR E B, 2%
T UNIXEREARBEIERGD) - LINUX HF LR &S
RAER| THA LHOWIR, B L {CF T B el R

B FIFLAAE S IETE LINUX tH R B3 A B A “EARLZ
FrIRER, & HWE BT T & A e B A

FARE] T o I ER LIRS, A KERAE T
JUMBEERT S fetchpop, PopTart, get—mail ,
gwpop, pimp, pop-perl, popc, popmail Flupop. F
F—MEHNEKRZ (B, Seung-Hong Oh)
E’]fetchpop AP H A G HR L HIThRENN Tt £, FHHE
THE—SHE . B e RSN T A 1.9 AR -

RIJL T ERALUE, AR T R/R-08 BT
Fipopclient”Xig, KBS T — . E
fetchpop B —HRIFAIFIFRE (HIWER J5& daemon
=), B HAELHE POP3 Hhill, M BRI E il
& (MZEYRENEERAERG/ DA HREF R, XH RS
HEER) - RRPMRE F—L8%, REARE, EMrY
FEF LA EE AT B MESSILR) fetchpop ERIThAE (BFE
K ECEIRE)

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

features (including those I'd coded myself).

Stay or switch? If I switched, I'd be throwing away the
coding I'd already done in exchange for a better development base.

A practical motive to switch was the presence of multiple-
protocol support. POP3 is the most commonly used of the post-
office server protocols, but not the only one. Fetchpop and the
other competition didn't do POP2, RPOP, or APOP, and I was
already having vague thoughts of perhaps adding IMAP (Internet
Message Access Protocol, the most recently designed and most
powerful post-office protocol) just for fun.

But I had a more theoretical reason to think switching might
be as good an idea as well, something I learned long before Linux.

3. “Plan to throw one away, you will, anyhow." (Fred
Brooks, The Mythical Man-Month, Chapter 11)

Or, to put it another way, you often don't really understand
the problem until after the first time you implement a solution.
The second time, maybe you know enough to do it right. So if you
want to get it right, be ready to start over at least once [JB].

Well (I told myself) the changes to fetchpop had been my
first try. So I switched.

After I sent my first set of popclient patches to Carl Harris on
25 June 1996, I found out that he had basically lost interest in
popclient some time before. The code was a bit dusty, with minor
bugs hanging out. I had many changes to make, and we quickly
agreed that the logical thing for me to do was take over the
program.

AkRSH fetchpop 1025 #: %) popclient E&? R
WerE, FETIEERCAS I AR R — i — L
FRI T 2 BT o

— L RN Z PP B S HF - POP3 &Rk
% axii POP Pl FR s Y, {EAZME—) . fetchpop #l
BR— " m X FHASCHF POP2 -~ RPOP 2 APOP, .2
ZHT RN THEDURINIMAP (BGF& it ey~ &iE KR POP
W) HIRERIARYE -

EIFADE— P FHIL ERREER SRR T E
o X R Linux Z B2 i -

3) “RIPE—A B niRERSThE—
. 7 (BREEMET (AAME) F11E)
B EMANE, HERE—IREH— R, REFIT
BB BEIEEBIRRIE . 5 IRV, BUFIRE2%E] TR
e o B DR R ABIE BB EOS i, e/ 0ER
—\/j_’\o

IR (FexFE O) |, N fetchpop B M E T 56
—IKIE . TRIEFEHT -

7£1996 % 6 H 25 HELA /K- BT AE T RE
—it popclient b T f5, T A B — B (B 2 Bt 274 b
XX H R GE T . T E IR ELEERIE T, DR R
ITEANE - WERZEERIARM; IR REERIEE
NI HBEF AR R SR T .

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Without my actually noticing, the project had escalated. No
longer was I just contemplating minor patches to an existing POP
client. I took on maintaining an entire one, and there were ideas
bubbling in my head that I knew would probably lead to major
changes.

In a software culture that encourages code-sharing, this is a
natural way for a project to evolve. I was acting out this principle:

4. If you have the right attitude, interesting problems will

find you.

But Carl Harris's attitude was even more important. He
understood that

5. When you lose interest in a program, your last duty to it is
to hand it off to a competent successor.

Without ever having to discuss it, Carl and I knew we had a
common goal of having the best solution out there. The only
question for either of us was whether I could establish that [was a
safe pair of hands. Once I did that, he acted with grace and
dispatch. I hope I will do as well when it comes my turn.

9

FERE R AR, X ADIE AR T - FAFRHE
H— DI) POP 2 Fmi AU LN T AT T
HrRAERF, mAIGNERR T EEENH IR RS
S e B -

FE— P EB R I Z R S
HYEIR T e BRI — .

> &D%{/J\ﬁ‘ﬂzﬁﬁaﬁlu\ ﬁ/uwu\gﬁ[ﬂ@ :BZ@M

‘ﬁhwiﬁmurﬁiﬁigo@%ﬁ-

5) ZHRM—PNITE K EGBRES, (RIS RVIATT T
EA LG — DI IRIRA4R AR -

RERIRFIBRMREE LE R X —H, BAIALER
3[R B VR — H i HIRERE o B TME— A R R
FERERUERAT AT SN . — BIAER] T, A RETT R
TET 28 - MAEL X —REF| TR, o FEMrEFR:
.

o T =bridid

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

The Importance of Having Users

And so I inherited popclient. Just as importantly, I inherited
popclient's user base. Users are wonderful things to have, and not
just because they demonstrate that you're serving a need, that
you've done something right. Properly cultivated, they can become
co-developers.

Another strength of the Unix tradition, one that Linux pushes
to a happy extreme, is that a lot of users are hackers too. Because
source code is available, they can be effective hackers. This can be
tremendously useful for shortening debugging time. Given a bit of
encouragement, your users will diagnose problems, suggest fixes,
and help improve the code far more quickly than you could
unaided.

6. Treating your users as co-developers is your least-hassle
route to rapid code improvement and effective debugging.

The power of this effect is easy to underestimate. In fact,
pretty well all of us in the open-source world drastically
underestimated how well it would scale up with number of users
and against system complexity, until Linus Torvalds showed us
differently.

In fact, I think Linus's cleverest and most consequential hack
was not the construction of the Linux kernel itself, but rather his
invention of the Linux development model. When I expressed this
opinion in his presence once, he smiled and quietly repeated
something he has often said: *'I'm basically a very lazy person
who likes to get credit for things other people actually do." Lazy
like a fox. Or, as Robert Heinlein famously wrote of one of his
characters, too lazy to fail.

10

F P& ik

hiXEE, Tk T popclient. FIFFEEAE, 4k
7 popclient FIH FRE . $HEH P2 HETFIEE, MUE
FAATUESE TR & T —FhR2, M EARIEEEIES T - 78
EYEEFRT, AATe] LUEChH LR &5 -

UNIX Z5H AR — R, Linux 88 & B2 R K
HP—1, BREAFHEERE . BNl IRENER, i
TR LR BRSO RE o X — S 4 JE T (R & 3R B a5
B - B— sS85, AT 2R, $E H BRI
T, FERUR— N AANT] 4R B fr) 5 5 5 B e (RS,

6) 1EH PR A 1EE R 2 B A PR s RS FE 2L
VR P B E

X — ST A RE IR A B KA - L L, EEIMYN
WrdE LR AT TR T 280, AR R B LG
NER T EEAG T EWmEA PR E K, TeRREZ 48
P

HEE, BIAHMRET RIS - seERmMEIFENE
% Linux 10 AR S T2 &R T Linux FIFF &0 43K
—IRFEM BT R0 TIX S B, fiIREE T, ZEfiE
B TSR —a)E: “HEALE—REEMAN, =
AEH SR FN A AHE LIRS . SRS -
8/ # % Robert Heinlein &S — 1 AE: KMirE
TMAZ R -

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

In retrospect, one precedent for the methods and success of
Linux can be seen in the development of the GNU Emacs Lisp
library and Lisp code archives. In contrast to the cathedral-
building style of the Emacs C core and most other GNU tools, the
evolution of the Lisp code pool was fluid and very user-driven.
Ideas and prototype modes were often rewritten three or four times
before reaching a stable final form. And loosely-coupled
collaborations enabled by the Internet, a la Linux, were frequent.

Indeed, my own most successful single hack previous to
fetchmail was probably Emacs VC (version control) mode, a
Linux-like collaboration by email with three other people, only
one of whom (Richard Stallman, the author of Emacs and founder
of the Free Software Foundation) I have met to this day. It was a
front-end for SCCS, RCS and later CVS from within Emacs that
offered "“one-touch" version control operations. It evolved from a
tiny, crude sccs.el mode somebody else had written. And the
development of VC succeeded because, unlike Emacs itself,
Emacs Lisp code could go through release/test/improve
generations very quickly.

The Emacs story is not unique. There have been other
software products with a two-level architecture and a two-tier user
community that combined a cathedral-mode core and a bazaar-
mode toolbox. One such is MATLAB, a commercial data-analysis
and visualization tool. Users of MATLAB and other products with
a similar structure invariably report that the action, the ferment,
the innovation mostly takes place in the open part of the tool
where a large and varied community can tinker with it.

11

[E38F, Linux VAR BIh)— 56612 GNU
Emacs) Lisp A Lisp A% - 5 Emacs CHZDFITKR
ZEHE GNU TR RZEERMEAMHR, Lisp AR
BRI RIERR - ZHAFPIKEE . ERMEREA S
EEE ZINIRA AR — M E EERLIES . & Linux 7F
P E o BRI FORA BL O M E AR A

BasE, 3 H O fetchmail Z B I A — KR FE 7] BE
7= Emacs fVC (FAR#ER]) B IS H i =1 GEd
L FRBE S Linux —FER) —IRETE. = D AHFRESHL
it— (Richard Stallman, Emacs fI{EE - BB
&SR N) - VC /& Emacs 1 SCCS, RCS FflJE3#
CVS MIHI&; Emacs & ISR e B 207 O RN i
1E- BERE— RGNV - R scesl.el BiziEH#
Mok . VC FF & IRt 2N Emacs Lisp RIS A%
Emacs ARGALEE, B DIBREME T 2 21T, st B2
B HIEER -

Emacs FIEENEME—R) . HTREHEEE XMIUE
PIZEFIUZ I R O REEE, TAEFEHTE
fEst . Eihp— 2 MATLAB, —™ R R 207
WP TE . MATLAB FIHEE R LIZEM = & A P —Edk &
Ui, PRI RGER o ——F — > B RS A P B] DA R
(s T ——A s« BRI AE -

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Release Early, Release Often

Early and frequent releases are a critical part of the Linux
development model. Most developers (including me) used to
believe this was bad policy for larger than trivial projects, because
early versions are almost by definition buggy versions and you
don't want to wear out the patience of your users.

This belief reinforced the general commitment to a cathedral-
building style of development. If the overriding objective was for
users to see as few bugs as possible, why then you'd only release a
version every six months (or less often), and work like a dog on
debugging between releases. The Emacs C core was developed
this way. The Lisp library, in effect, was not—because there were
active Lisp archives outside the FSF's control, where you could go
to find new and development code versions independently of
Emacs's release cycle [QR].

The most important of these, the Ohio State Emacs Lisp
archive, anticipated the spirit and many of the features of today's
big Linux archives. But few of us really thought very hard about
what we were doing, or about what the very existence of that
archive suggested about problems in the FSF's cathedral-building
development model. I made one serious attempt around 1992 to
get a lot of the Ohio code formally merged into the official Emacs
Lisp library. I ran into political trouble and was largely
unsuccessful.

But by a year later, as Linux became widely visible, it was
clear that something different and much healthier was going on
there. Linus's open development policy was the very opposite of
cathedral-building. Linux's Internet archives were burgeoning,
multiple distributions were being floated. And all of this was

12

PRA R

B RAGFIIRE & A & Linux JTF &2 AR a0 —3 4
LIRTZE0T A& (BT #OA XX 5 ST R0 H it
e RIE, BRI JL P& RS B[R] SR, fRAS
TEVHFESTH PRI L o

XS AR AT R B E K & - W
REEMERERELHP DB RA, IBARNZSTHA
ERBFALA— AR, FEWIREAMZ BSR M—Edta T
YEVE - Emacs i C A2 DB IX T &1 - Lisp FESERr b
NE—R N H BRSSPI EZ SN HETERR
Lisp 7744, MM FEmacs 894 7 B HA 8T AT 2
JFRRAS -

Horh i B AR M M 3L K2 Emacs Lisp B2,
AT RS 74K Linux KBRS Z ARSI 2 ThEE -
EEBATFIRDE NRE BT A TEM T 4 - B EER
PIFFAEAR SRR T B B 52 PR EE T A B BB
Lein@i . 7F 1992 Fifs, FRIAE LS 1 EH0 — KA Z AT
1343 %8] Emacs Lisp F'E 7 E B 2% . Ffilk b 7 BouatErrk
M, JEH BT -

BEEFT—FELE, % Linux A5 T ZEE
5, TIRMATE 2 AR RE R 2w BN @R A AR 7Y - AR
WA T & BUR IE S #E KRB R T M - Linux 1
HEAMIBRBZE BN, 20 ZITMRAES AT - MTE X
e AW AN OE M N 0V T ST I

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

driven by an unheard-of frequency of core system releases.

Linus was treating his users as co-developers in the most
effective possible way:

7. Release early. Release often. And listen to your customers.

Linus's innovation wasn't so much in doing quick-turnaround
releases incorporating lots of user feedback (something like this
had been Unix-world tradition for a long time), but in scaling it up
to a level of intensity that matched the complexity of what he was
developing. In those early times (around 1991) it wasn't unknown
for him to release a new kernel more than once a day! Because he
cultivated his base of co-developers and leveraged the Internet for
collaboration harder than anyone else, this worked.

But how did it work? And was it something I could
duplicate, or did it rely on some unique genius of Linus Torvalds?

I didn't think so. Granted, Linus is a damn fine hacker. How
many of us could engineer an entire production-quality operating
system kernel from scratch? But Linux didn't represent any
awesome conceptual leap forward. Linus is not (or at least, not
yet) an innovative genius of design in the way that, say, Richard
Stallman or James Gosling (of NeWS and Java) are. Rather, Linus
seems to me to be a genius of engineering and implementation,
with a sixth sense for avoiding bugs and development dead-ends
and a true knack for finding the minimum-effort path from point A
to point B. Indeed, the whole design of Linux breathes this quality
and mirrors Linus's essentially conservative and simplifying
design approach.

So, if rapid releases and leveraging the Internet medium to
the hilt were not accidents but integral parts of Linus's
engineering-genius insight into the minimum-effort path, what
was he maximizing? What was he cranking out of the machinery?

13

PRONHTAE LB] BERR R 7 3 LA VB A Rt O
P

7) B WA WTEUH AR R

%ﬁﬁﬁ\%%ﬁiﬁF&m,ﬁTuAEM%%%@
B (Unix HERARA LORBVAIXFEST) « MR BIHTZ 4%
ERXNINEFRE] T 5T X RS E 2R TR
RN - 72 R BN (1991 24) |, FRATAEENTUL
13— R AA L — BT NAZRRAS | R il AR AR S5
THIETEEAETT AR (M L S48, A INEERL
T

HRECEHERNE? EREBTHE), L2 EH
G FETLRR A R A A RESE IR

AR - MO H SRR BB EE - FATEILD
NBEM KRS — A TR IR E R G OWE? (H ARG
HEEEH BRI SR . Mg (B 8%H
RH) % Richard Stallman i James Gosling (of NeWS
and Java)RFnEit AR A - FERE R, M%%E%%
THEMBITHRA, BEETR Eﬁ%ﬁﬂ%%A ERNE77
FIMA SEIB AEERNEASE . B, B4 ImuxiéR
BB PRI, RO T RO T B I A a7

SRS A AR AT R FE LR R A AN (R AR
[, TSR ARGN T B i E i) TR R A TR S EHLE 4,
BB LA BEASR AT 2 WR? AFEX ML KSR A 2 AT A e

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Put that way, the question answers itself. Linus was keeping
his hacker/users constantly stimulated and rewarded—stimulated
by the prospect of having an ego-satisfying piece of the action,
rewarded by the sight of constant (even daily) improvement in
their work.

Linus was directly aiming to maximize the number of
person-hours thrown at debugging and development, even at the
possible cost of instability in the code and user-base burnout if any
serious bug proved intractable. Linus was behaving as though he
believed something like this:

8. Given a large enough beta-tester and co-developer base,
almost every problem will be characterized quickly and the fix
obvious to someone.

Or, less formally, "*Given enough eyeballs, all bugs are
shallow." I dub this: **Linus's Law".

My original formulation was that every problem ""will be
transparent to somebody". Linus demurred that the person who
understands and fixes the problem is not necessarily or even
usually the person who first characterizes it. **Somebody finds the
problem," he says, “and somebody else understands it. And I'll go
on record as saying that finding it is the bigger challenge." That
correction is important; we'll see how in the next section, when we
examine the practice of debugging in more detail. But the key
point is that both parts of the process (finding and fixing) tend to
happen rapidly.

In Linus's Law, I think, lies the core difference underlying
the cathedral-builder and bazaar styles. In the cathedral-builder

view of programming, bugs and development problems are tricky,
insidious, deep phenomena. It takes months of scrutiny by a

14

X, ER—H TR RGBT A2
AR H P —3aR B TS 5 T2 B #E
W, HORETEEMNTE T IIENRSE (EEFR) #
&

PRGN ELIE RS HE 1 AT 2 P AR AL, RIEEAR
MRBEFIRENE, B MEEAN T #)™ &R 2 5
P o MRONETH A P B AR S

8) TR beta MIRXE M-S 1EI 28 BIREE R KA
i, JUFEA RS PR RIE, 28 NI 22 it i
iR

BEER— R, CRERREBE, PrE R -
FRRZ I “ARGHTAI]” -

P P BRI E B PR AR E R AR A" - MRG0
e FUNG AR AA—EREZE—BAESE 1
AN o “— D NEZIRE", b, “H—TANEE
fREE - T HFSEUE A TR B N fE— L . X2 E
BRYIE; £ N —THATEAETTF LR 2B 2]
Lo (BREFRHE— SR, RENNE R AL A 5R—fRHD
EARRTERL, -

PN RAHIR N AL 78 REEAR A B <
BEH - AERHEAXPREN ST, RENIT A EHREE
Bk RMEMBEER - 2L A&82 0L A A H

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

dedicated few to develop confidence that you've winkled them all
out. Thus the long release intervals, and the inevitable
disappointment when long-awaited releases are not perfect.

In the bazaar view, on the other hand, you assume that bugs
are generally shallow phenomena—or, at least, that they turn
shallow pretty quickly when exposed to a thousand eager co-
developers pounding on every single new release. Accordingly
you release often in order to get more corrections, and as a
beneficial side effect you have less to lose if an occasional botch
gets out the door.

And that's it. That's enough. If ""Linus's Law" is false, then
any system as complex as the Linux kernel, being hacked over by
as many hands as the that kernel was, should at some point have
collapsed under the weight of unforseen bad interactions and
undiscovered "‘deep" bugs. If it's true, on the other hand, it is
sufficient to explain Linux's relative lack of bugginess and its
continuous uptimes spanning months or even years.

Maybe it shouldn't have been such a surprise, at that.
Sociologists years ago discovered that the averaged opinion of a
mass of equally expert (or equally ignorant) observers is quite a
bit more reliable a predictor than the opinion of a single randomly-
chosen one of the observers. They called this the Delphi effect. It
appears that what Linus has shown is that this applies even to
debugging an operating system—that the Delphi effect can tame
development complexity even at the complexity level of an OS
kernel. [CV]

One special feature of the Linux situation that clearly helps
along the Delphi effect is the fact that the contributors for any
given project are self-selected. An early respondent pointed out
that contributions are received not from a random sample, but

15

EENERETEOGED . FUFEKKNLAHAN, —B%
BEAMIRAE5%, KER TR

A7, N, (R LR
B — B2 TR AR ORI B — T
ARRRT, ENRRRREEAT - A5, (RAELH
RABENE L 0015 . (9 — PHIARL, 8/t 1K T
FREEILTET -

BT - SXHBOST o IR HARTEI R RA
4% Linux PRGBS, 2 THRA % AR
T, BRI B U TULE BRI
BORBNER TR T - WRA—TECRERN, TR
LS Linux RS0 HIE, AV SRR L ERORE
TR

SRR — RS - AR ER NS A
T—RBRENT (URRER) HUEEHTARNEL
LA RAHLERA— 1 BT - fTHRZ i
BB o B FARIIT LT 35— BE TVt — 1 3
RO RS MRIERANBNEREE L, W
BE AT LT -

Linux G R B TR — 5,
FT—A 055 542 B RIBEE . — RIFILIEH],
%f Linux S TTHRASESR BT — BERLATABE: {20 25

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

from people who are interested enough to use the software, learn
about how it works, attempt to find solutions to problems they
encounter, and actually produce an apparently reasonable fix.
Anyone who passes all these filters is highly likely to have
something useful to contribute.

Linus's Law can be rephrased as ""Debugging is
parallelizable". Although debugging requires debuggers to
communicate with some coordinating developer, it doesn't require
significant coordination between debuggers. Thus it doesn't fall
prey to the same quadratic complexity and management costs that
make adding developers problematic.

In practice, the theoretical loss of efficiency due to
duplication of work by debuggers almost never seems to be an
issue in the Linux world. One effect of a *'release early and often"
policy is to minimize such duplication by propagating fed-back
fixes quickly [JH].

Brooks (the author of The Mythical Man-Month) even made
an off-hand observation related to this: " The total cost of
maintaining a widely used program is typically 40 percent or more
of the cost of developing it. Surprisingly this cost is strongly
affected by the number of users. More users find more bugs."
[emphasis added].

More users find more bugs because adding more users adds
more different ways of stressing the program. This effect is
amplified when the users are co-developers. Each one approaches
the task of bug characterization with a slightly different perceptual
set and analytical toolkit, a different angle on the problem. The
“"Delphi effect" seems to work precisely because of this variation.
In the specific context of debugging, the variation also tends to
reduce duplication of effort.

16

PR SF o X e~ TR ECATLEE i I AR P A 31)]
L HEES E BIR TR IE . B T X SRR R Y
N— M #R&E FT LLTER) B S08)

RO AT LA Ry e A TR - RUE R
ENFBE—ANIKERDE, BN ZRHEAFTEZ DK
PR o ANINTF & N BT SR B 77 B B 2 AN A B A AN 7RI
BHANER

e B R AR E EE M S EEIRCR K TE Linux
TR PL B L MR — A8 . “BEA . EA
1" SRRSO — 5 Rt 1 i R A AR R BN E S
hig/ MU

Mg (CANA#E) BES) EZRET— M HERpFE
EFRS: NIz ARR R RO 4E B B — R T RO TT
KR 40% L L o A ATRAF IR, X2 2 AL
HHERFIEN . P4 % » ZIFAMS o " BB
il

FP#R% < & BIIA R 2 2 R A RIS FE FF 1) A 5 ik
% . YHPERREAVEFZER, X MNEBHCRT « R
RS RREA, B AEVE — SRR T R T T
B, WAFE AR F— R o s " BT 152] hiX
FhEZREMETMARL . ERREFIEEIRE T, XMESEED
T D ES M -

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

So adding more beta-testers may not reduce the complexity
of the current “"deepest" bug from the developer's point of view,
but it increases the probability that someone's toolkit will be
matched to the problem in such a way that the bug is shallow to
that person.

Linus coppers his bets, too. In case there are serious bugs,
Linux kernel version are numbered in such a way that potential
users can make a choice either to run the last version designated
““stable" or to ride the cutting edge and risk bugs in order to get
new features. This tactic is not yet systematically imitated by most
Linux hackers, but perhaps it should be; the fact that either choice
is available makes both more attractive. [HBS]

How Many Eyeballs Tame Complexity

It's one thing to observe in the large that the bazaar style
greatly accelerates debugging and code evolution. It's another to
understand exactly how and why it does so at the micro-level of
day-to-day developer and tester behavior. In this section (written
three years after the original paper, using insights by developers
who read it and re-examined their own behavior) we'll take a hard
look at the actual mechanisms. Non-technically inclined readers
can safely skip to the next section.

17

Fr LA %038 B Bk, N £ /) beta & A
WA EDH AR RS R, E3inE DAL
BARIEI &M TR LR —— XX AR, X
[RIAE /N o

MROVTE 2 SMEEEE — 48 - IR A REAFAE R B
B, Linux NAZEIRCAR SR 5 SOVHE R P 2 — S iR
TR, BE R 2B LSRR R BTEIRE - 240
Linux B2 RSB IHX —3; B8R IZER
{7 o 28 X M FE S UM ER R RG] T -

£ 5V RERIRE R

FEEE PR R B T 88 KRR AN 1 YA CAs L
B, AL BETIERRRE S TFREMNRE
HIBE_EAMET AR BT A B — | F . X —T
(BRI XER=FLUE, R TIRTET . R T B
SHITLZENEL) | BATPRSHATSEHE — T EIERIL
o ANEXER B AT LI 2SN —T7

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

One key to understanding is to realize exactly why it is that
the kind of bug report non—source-aware users normally turn in
tends not to be very useful. Non—source-aware users tend to report
only surface symptoms; they take their environment for granted,
so they (a) omit critical background data, and (b) seldom include a
reliable recipe for reproducing the bug.

The underlying problem here is a mismatch between the
tester's and the developer's mental models of the program; the
tester, on the outside looking in, and the developer on the inside
looking out. In closed-source development they're both stuck in
these roles, and tend to talk past each other and find each other
deeply frustrating.

Open-source development breaks this bind, making it far
easier for tester and developer to develop a shared representation
grounded in the actual source code and to communicate
effectively about it. Practically, there is a huge difference in
leverage for the developer between the kind of bug report that just
reports externally-visible symptoms and the kind that hooks
directly to the developer's source-code—based mental
representation of the program.

Most bugs, most of the time, are easily nailed given even an
incomplete but suggestive characterization of their error
conditions at source-code level. When someone among your beta-
testers can point out, "there's a boundary problem in line nnn", or
even just "under conditions X, Y, and Z, this variable rolls over", a
quick look at the offending code often suffices to pin down the
exact mode of failure and generate a fix.

Thus, source-code awareness by both parties greatly
enhances both good communication and the synergy between what
a beta-tester reports and what the core developer(s) know. In turn,

18

BRI — R R AT A AR OUR RS I 7 Bz
AR BRI A TR B AN . ATOIRAHES R
[f] T Rk &R AR, ATHEZIT AR ST H A8 T
ProMef] (—) i 7 RBmEsEdE, (0) RDam—
EREE IR RABEITIE -

IX B IR 2 BT R I AT 24 2 i PR R AR T)
AILE; RE MSMERE, T REMNEEINE - AR
PE P RT ZARCH, MR ES BRI AER T,
EEMEAHIE, SR TS

TR R FTRR T IR MR 28, (56 A5 A S A AR AU RS F it
PRSI ARA L 2 TR R s R AT
RERDNZ « AREF, IF ORI NIAEIR AR Bk
M EER R P SLAETF A E U LSRR AR
&, ATIFRENHBREARAHEFER -

WA — MEREE RN SRR, RN
B, QEEER, RZHERERSLHH RHEAR 5L
. HRE) beta MK A HHEAN AGESS 1, “FE5 nnn 17
B AR, BiE R XYZ RN, IR
7, R RS B — BB T DLUBUE H B R
wa s e — BN X

FIrLL, 202R beta MRE A1 OJT & & FRRHRACHS O B
BEL SOTHISCRAMEER BRI - 458, XEWRE

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

this means that the core developers' time tends to be well
conserved, even with many collaborators.

Another characteristic of the open-source method that
conserves developer time is the communication structure of
typical open-source projects. Above I used the term "core
developer"; this reflects a distinction between the project core
(typically quite small; a single core developer is common, and one
to three is typical) and the project halo of beta-testers and
available contributors (which often numbers in the hundreds).

The fundamental problem that traditional software-
development organization addresses is Brook's Law: "*Adding
more programmers to a late project makes it later." More
generally, Brooks's Law predicts that the complexity and
communication costs of a project rise with the square of the
number of developers, while work done only rises linearly.

Brooks's Law is founded on experience that bugs tend
strongly to cluster at the interfaces between code written by
different people, and that communications/coordination overhead
on a project tends to rise with the number of interfaces between
human beings. Thus, problems scale with the number of
communications paths between developers, which scales as the
square of the humber of developers (more precisely, according to
the formula N*(N - 1)/2 where N is the number of developers).

The Brooks's Law analysis (and the resulting fear of large
numbers in development groups) rests on a hidden assumption:
that the communications structure of the project is necessarily a
complete graph, that everybody talks to everybody else. But on
open-source projects, the halo developers work on what are in
effect separable parallel subtasks and interact with each other very
little; code changes and bug reports stream through the core group,

19

LI Z NGB Rl 2 T2 Tk, RIEE1EE AEURZ -

TR ITIE SR — D T A B TB] (R e S 2 A TR
HEELEH « FE LR T o0 28—, X Bk
THEZL (—BARDN;, — MO RERFE, —2=1
REAL) Fbeta MK A S - BN AAHRATEING (42
HLAEN) XA .

58 L BRIFIT A WA ZR 5 R O B S [R AT 8 o 1
M. “FESERA T B SRR 7 A R 2B « At
ECENIAYY, BEET A NS E RN, TH SR
FERBIN AL F g0, kS LLE 2N -

290K, RRARZEPEANFNG S L
150 B3 U R A AR — e BRI 55 T P A 3
I e IXRARIS EIEM R - B, [FIRRE T &3 ZIA]
EINE R R, MEESTFREREEFTRAR (B
WERRH UL, B AZUNA(N - 1)/2, X B NZFF A E AL
H) -

s SEENR i (DLECE 5 RERITT & A A A\ Eud
ZHIR) EET—MNBEREHR: T H BRGS0
— D FEEE - B NERS HABPTE ASCHEE - (BRI IR
He, SNERITF R B MASER ER T B E, Bt
THEED; RBESAR B EARET H L, R

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

and only within that small core group do we pay the full
Brooksian overhead. [SU]

There are are still more reasons that source-code—level bug
reporting tends to be very efficient. They center around the fact
that a single error can often have multiple possible symptoms,
manifesting differently depending on details of the user's usage
pattern and environment. Such errors tend to be exactly the sort of
complex and subtle bugs (such as dynamic-memory-management
errors or nondeterministic interrupt-window artifacts) that are
hardest to reproduce at will or to pin down by static analysis, and
which do the most to create long-term problems in software.

A tester who sends in a tentative source-code—level
characterization of such a multi-symptom bug (e.g. "It looks to me
like there's a window in the signal handling near line 1250" or
"Where are you zeroing that buffer?") may give a developer,
otherwise too close to the code to see it, the critical clue to a half-
dozen disparate symptoms. In cases like this, it may be hard or
even impossible to know which externally-visible misbehaviour
was caused by precisely which bug—but with frequent releases,
it's unnecessary to know. Other collaborators will be likely to find
out quickly whether their bug has been fixed or not. In many
cases, source-level bug reports will cause misbehaviours to drop
out without ever having been attributed to any specific fix.

Complex multi-symptom errors also tend to have multiple
trace paths from surface symptoms back to the actual bug. Which
of the trace paths a given developer or tester can chase may
depend on subtleties of that person's environment, and may well
change in a not obviously deterministic way over time. In effect,
each developer and tester samples a semi-random set of the
program's state space when looking for the etiology of a symptom.
The more subtle and complex the bug, the less likely that skill will

20

/N INIRZ o] A FR A T AR S AR A R R

W HEEERERRRERR LR AR SEEER
R —MZ0 R R B B R B T DA A 2 AN [R] BEE
WK, AER P EFH SRS AT AR ARER . X
REFIR— MBS AP) R H—FP e R S
B A AT I IR A~ AREEAE R P & S R R A AR
(HAnshAS N8 B B H FEL TR RS

—MAPEX D ZIER R RARERIRE R 1A (]
W BRI 1250 fTHI SR s — ME 5 A EAH
H B URER TR N RiiE T8) #ihiatE AT LAgE
— MY RE R T BRI T AR IR A R R
EIXFERL T, W— MR B Tl — 1B R
HERRME (WRFRERNE) RIA—ABRAEME LA
N, XEALELZE) - HMEEEN]—RESRI R BB
HIRBEROWES . EFZHL T, REENRRIRE S
SRS R TRE TEEE ZiiEK -

ORI ZIEIRER M H 28 2 D WREERE AR 2] A
R BRESETE . — MRFE T R B B E e S/
IRPEE L AT REBGR THX N AR BAAREASRAN 77, WAR AT ERE
E IS 1A RS A AEANE T B3R - SEPR L, B—1ITF A&
ANEE AT e — MEIREIR R R A R A R AR Y
RS FE— LRI 8 Fa . RGBSR, &

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

be able to guarantee the relevance of that sample.

For simple and easily reproducible bugs, then, the accent will
be on the "semi" rather than the "random"; debugging skill and
intimacy with the code and its architecture will matter a lot. But
for complex bugs, the accent will be on the "random". Under these
circumstances many people running traces will be much more
effective than a few people running traces sequentially—even if
the few have a much higher average skill level.

This effect will be greatly amplified if the difficulty of
following trace paths from different surface symptoms back to a
bug varies significantly in a way that can't be predicted by looking
at the symptoms. A single developer sampling those paths
sequentially will be as likely to pick a difficult trace path on the
first try as an easy one. On the other hand, suppose many people
are trying trace paths in parallel while doing rapid releases. Then it
is likely one of them will find the easiest path immediately, and
nail the bug in a much shorter time. The project maintainer will
see that, ship a new release, and the other people running traces on
the same bug will be able to stop before having spent too much
time on their more difficult traces [RJ].

21

TEDAEBEOE CRIUEFCE AL MH R RS

T RBRAEDERPRR, o, EHFEN
FE" LR ANE “BEAL” LI P ROBREA ACRS - HESR
HUAEE S B 20 - (HX TERR R, EE L E e T
HL” B - XL T2 AR BB E DB FFELE
BRE R 2 ——HI X DB B RE K R 2 -

B MANFT R L EIRZ 0 2] SR R A ER B A2 e AN
— ~ MELUOAEERAR T 0035, X —RORM 2 A F 2 R
T o =AM FFEHEEX EHE R A — T RE R B B —
A B R AT BRI) — N EREIBR R . S,
WA S NEREZ A N H ke X a1 - A
AHAPRE—PATTRES S ERIRES e, RN
Z N A B X R . fEPIH I AS BRI, =T
— WA At B R R Y B LB B R — S R AT
AT AFEAE DR R 22 IR [R] 2 Ji5 45 A

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

When Is a Rose Not a Rose?

Having studied Linus's behavior and formed a theory about
why it was successful, I made a conscious decision to test this
theory on my new (admittedly much less complex and ambitious)
project.

But the first thing I did was reorganize and simplify
popclient a lot. Carl Harris's implementation was very sound, but
exhibited a kind of unnecessary complexity common to many C
programmers. He treated the code as central and the data
structures as support for the code. As a result, the code was
beautiful but the data structure design ad-hoc and rather ugly (at
least by the high standards of this veteran LISP hacker).

I had another purpose for rewriting besides improving the
code and the data structure design, however. That was to evolve it
into something I understood completely. It's no fun to be
responsible for fixing bugs in a program you don't understand.

For the first month or so, then, I was simply following out
the implications of Carl's basic design. The first serious change I
made was to add IMAP support. I did this by reorganizing the
protocol machines into a generic driver and three method tables
(for POP2, POP3, and IMAP). This and the previous changes
illustrate a general principle that's good for programmers to keep
in mind, especially in languages like C that don't naturally do
dynamic typing:

9. Smart data structures and dumb code works a lot better
than the other way around.

Brooks, Chapter 9: **Show me your flowchart and conceal
your tables, and I shall continue to be mystified. Show me your
tables, and I won't usually need your flowchart; it'll be obvious."

22

R R K

W5 T RN OVEIR IR B IE AL T — N B A AR Th
W BEEBIRMREAERPFIE (HREH Linux 3548
TN 7)) B NS

ERMEFE—HE ZIE popclient AL T % -
RIR - I BETFRIESIARL, E2F—MECEFAF
WILEZRE S . MIERBEAET O E, BURSEMIE
NERE . SERMAERES HEHIESGHEEEEEA
B (ZE/DIRIEFIX D LISP ZFHIFRERE) -

IR, B T BOH RS A SR ST LIS, A EE IR
A —EZBK . IBRIECHFNME— N RESHBARG . B
BN Z 2R — R, 4R AT T -

FTRAEBVF—TALESL, BASELRRR/RERM
H. BIENE P EHEERZZRINT IMAP 3 - FSLHLX
SRR B UGT INLRI AL T — E A R
F=DHIEEE (48155 POP2 « POP3 f1 IMAP) - X7l
PLRT AR SR RTE T — NMEF S TROZ S ERE AR, I
HXTFAR CIX ARG N R SEIRRAES

9) BERHREIRSMA BEMRIEEAN T RIFHZE -

MEHENLE: “ARERMER TR IR
B FSREEMIGE - AEREBERNIER, BB ANEER
FIRERT: FHZEPRENT” . &3 =+ERSULFIAR

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Allowing for thirty years of terminological/cultural shift, it's the
same point.

At this point (early September 1996, about six weeks from
zero) I started thinking that a name change might be in order—
after all, it wasn't just a POP client any more. But I hesitated,
because there was as yet nothing genuinely new in the design. My
version of popclient had yet to develop an identity of its own.

That changed, radically, when popclient learned how to
forward fetched mail to the SMTP port. I'll get to that in a
moment. But first: I said earlier that I'd decided to use this project
to test my theory about what Linus Torvalds had done right. How
(you may well ask) did I do that? In these ways:

e [released early and often (almost never less often
than every ten days; during periods of intense
development, once a day).

e [grew my beta list by adding to it everyone who
contacted me about fetchmail.

e [sent chatty announcements to the beta list whenever
I released, encouraging people to participate.

e And I listened to my beta-testers, polling them about
design decisions and stroking them whenever they sent in
patches and feedback.

The payoff from these simple measures was immediate.
From the beginning of the project, I got bug reports of a quality
most developers would kill for, often with good fixes attached. I
got thoughtful criticism, I got fan mail, I got intelligent feature
suggestions. Which leads to:

10. If you treat your beta-testers as if they're your most
valuable resource, they will respond by becoming your most

23

BT, XER— N EE
XEF (1996 49 H¥), KAFLTENTEY) |, |IF
BRI N EF AZ AN 2 F T — EEREAFIUE—
POP % Pt - (HRRAMNE, B ANERT EIBEEHT 4
HIERH AT . i popclient AR FEEL EHE HOH
FEHAIE -
X popclient 24 T /EREIEEE AOBRAEEE & 3] SMTP % H)
BpfigE, X —m B N T - i —2 JLEMRX S (HEE
55 Bt Bk F X A1 B SRR E S RGN . FEFLZERY
RIhz AhERe . (tein]) T2 EREMEIR? LU
] -
o HELMAME LM JLEMKRIETT+R—IX; &
SR A IR, —R—IRK) .
o FIEE NAIFEL R fetchmail BN T Fe
beta M4 &
o BYHIJEKM— A, T beta ZHELE—N
KEAES, 8RR 25 .
o FKWTH beta MIRE IR W, 1T EAESKRMA]
PIEVE, HMATESHN T R I B 345 T 5200
XL B I ME S WAL T o T H B R, B
B ZHIT R EZE SR LSRN M E E R HRE, %80
W TFRIANT o« IR TIRBBGERIEL « MLl &
HERIZhREPE R - JXFE M T
10) GERARLL“BE ME BHIR R3S R /R B beta M
., AT LIACR BB MHE BTR R B -

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

valuable resource.

One interesting measure of fetchmail's success is the sheer
size of the project beta list, fetchmail-friends. At the time of latest
revision of this paper (November 2000) it has 287 members and is
adding two or three a week.

Actually, when I revised in late May 1997 I found the list
was beginning to lose members from its high of close to 300 for
an interesting reason. Several people have asked me to
unsubscribe them because fetchmail is working so well for them
that they no longer need to see the list traffic! Perhaps this is part
of the normal life-cycle of a mature bazaar-style project.

Popclient becomes Fetchmail

The real turning point in the project was when Harry
Hochheiser sent me his scratch code for forwarding mail to the
client machine's SMTP port. I realized almost immediately that a
reliable implementation of this feature would make all the other
mail delivery modes next to obsolete.

For many weeks I had been tweaking fetchmail rather
incrementally while feeling like the interface design was
serviceable but grubby—inelegant and with too many exiguous
options hanging out all over. The options to dump fetched mail to
a mailbox file or standard output particularly bothered me, but I
couldn't figure out why.

24

fetchmail FIRLDH A —VE B BRI 77 H 251 H 7Y beta
MR % 8 (fetchmail-friends) FIEK - fEX ks & A5
JE—fmpInHE (20005911 H) . BH 287 &R, MA
BAEWEERIMMN =4 -

SEPR b, HMIAE 1997 £ 5 H NG IR, FA IR
XNGEHT—MEEEMERE, NEi 300 FI&EFis
MAERE T » —E ABERFBICMATNZ B E 5, Eh
fetchmail XA PRHHZIT5E3E « M TR A TFZ 3G
MREEFNFR T | BRI — D R T 88 XU B30T B B IE R A
i EHA R —HR 4>

Popclient % 5 7 Fetchmail

XA H R IERR AT FUEMR A - TSRS (Harry
Hochheiser) JEth A & HEFHE]2 AL SMTP i H 1 E
i &2 T F o BILPFE ERRELX DD REER AT S S0
ok, SR EHTE R A R LI o 5 -

MBI, B BRA— R A RS
fetchmail;, — R FFERIHART LA, (HE2 AR T
B ——REZ A EERET, ISR . IESERAER T
— HERPERE B bR R B AR UL A RO, (H3
AN

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

(If you don't care about the technicalia of Internet mail, the
next two paragraphs can be safely skipped.)

What I saw when I thought about SMTP forwarding was that
popclient had been trying to do too many things. It had been
designed to be both a mail transport agent (MTA) and a local
delivery agent (MDA). With SMTP forwarding, it could get out of
the MDA business and be a pure MTA, handing off mail to other
programs for local delivery just as sendmail does.

Why mess with all the complexity of configuring a mail
delivery agent or setting up lock-and-append on a mailbox when
port 25 is almost guaranteed to be there on any platform with
TCP/IP support in the first place? Especially when this means
retrieved mail is guaranteed to look like normal sender-initiated
SMTP mail, which is really what we want anyway.

(Back to a higher level....)

Even if you didn't follow the preceding technical jargon,
there are several important lessons here. First, this SMTP-
forwarding concept was the biggest single payoff I got from
consciously trying to emulate Linus's methods. A user gave me
this terrific idea—all I had to do was understand the implications.

11. The next best thing to having good ideas is recognizing
good ideas from your users. Sometimes the latter is better.

Interestingly enough, you will quickly find that if you are
completely and self-deprecatingly truthful about how much you
owe other people, the world at large will treat you as though you
did every bit of the invention yourself and are just being
becomingly modest about your innate genius. We can all see how
well this worked for Linus!

25

(B R AR ot L B O HIR 2 TR AR A 7 B4, AT A4 Bkt
NI B -)

BIRFEE SMTP ¥ 4 it i, FRE P2 popclient 7
HEMRZHEE - T T B — M55 T A
(MTA) , ¥E—1AH#HT & (MDA) - 5T SMTP
LIRS, ERLAT LUERE MDA FIUAT, B0 BAEMTA, 1
M A) 2 Bb 45238 B8 45 sendmail 2 R R TSR fil -

= JLFR—F TCP/IP SCRFHF- 5 LA T 25 5
HAIEEE, Syt 208 Z L ATHE MDA B %l & BB AR) “ 8
TE —ININTUEY JEHERX B A B BRI R L PRIE
FIEH A LA IER) SMTP HR A —FF——IERF AT IR

GREEE—ZRL......)

RIEPRIE £ LIERSORARTE, XEAJLAEENS
%o B, X0 SMTP A K& 7Bl BTG 7
ERBRARBMGR . — P F%E T XD BB A T—HF
B DCE B AR TR 3L o

11) SURTIREEFNERRZRINRZR B THP LT
TR B REEEF L.

BUBIR, MRRSE AR AR T I
S0 RS K ISR R 2R R R — P H
b IR E T T R BIEEERS « FUR R R R
Fok BT - AT LB B 2235 T %

>

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

(When I gave my talk at the first Perl Conference in August
1997, hacker extraordinaire Larry Wall was in the front row. As |
got to the last line above he called out, religious-revival style,
“Tell it, tell it, brother!". The whole audience laughed, because
they knew this had worked for the inventor of Perl, too.)

After a very few weeks of running the project in the same
spirit, I began to get similar praise not just from my users but from
other people to whom the word leaked out. I stashed away some of
that email; I'll look at it again sometime if [ever start wondering
whether my life has been worthwhile :-).

But there are two more fundamental, non-political lessons
here that are general to all kinds of design.

12. Often, the most striking and innovative solutions come
from realizing that your concept of the problem was wrong.

I had been trying to solve the wrong problem by continuing
to develop popclient as a combined MTA/MDA with all kinds of
funky local delivery modes. Fetchmail's design needed to be
rethought from the ground up as a pure MTA, a part of the normal
SMTP-speaking Internet mail path.

When you hit a wall in development—when you find
yourself hard put to think past the next patch—it's often time to
ask not whether you've got the right answer, but whether you're
asking the right question. Perhaps the problem needs to be
reframed.

Well, I had reframed my problem. Clearly, the right thing to
do was (1) hack SMTP forwarding support into the generic driver,
(2) make it the default mode, and (3) eventually throw out all the
other delivery modes, especially the deliver-to-file and deliver-to-
standard-output options.

26

(MIRAE 1997 S/ —IK Perl K& L& 5 MRS,
B2ZK Larry Wall IEARTERTHE L - B2 L piia)
THEIR R, MR TR, SREEERIOV), “UHk, i
Mok, BT "R T, RO TAIEX — 55 Perl B
KEAE WA .)

FEFR A DX MR it a7 7L 28LE, T h
BRIR L —ADCE BIA A A, THR B THAL
GRTEEANT - FIE—LefR o T AR, B AR s
B MR Be R A R LORHE, B ELEHFER:-) -

HREE W EEARR) - EBUATEREI N & RS T &
F

12) &HRZBAIQERIT 2% %k B TEIREIRITR
AR RS T o

HHARSAE popclient FF AL — 1 E £/ U\ AR
ERIEREZCA) MTA/MDA B, il 2 12 B 7 A R 55 1Y [n] R
Fetchmail B3 1T NIZA/ER — 4) MTA——IEH HY
SMTP EL IR W IR {4 % S B A2 7O — 3P 0 —— R E AL

BARAETF A& F L2 S A RIS —— 2 VR38R T 2288 T
— N T BB ——— SR S RIZ 0] AN R A B AR
XF, TR AR Rl AN o B /R A R RE 22 B 8T 3 -
WEL.EREE LT RAAE . B, EFETE (D)
ESMTP R A FFMARERIREIE L, (2) EEHEN
UL, (3) RIEHEMR SRR LH, THEE
T B SRR i H AR

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

I hesitated over step 3 for some time, fearing to upset long-
time popclient users dependent on the alternate delivery
mechanisms. In theory, they could immediately switch to .forward
files or their non-sendmail equivalents to get the same effects. In
practice the transition might have been messy.

But when I did it, the benefits proved huge. The cruftiest
parts of the driver code vanished. Configuration got radically
simpler—no more grovelling around for the system MDA and
user's mailbox, no more worries about whether the underlying OS
supports file locking.

Also, the only way to lose mail vanished. If you specified
delivery to a file and the disk got full, your mail got lost. This can't
happen with SMTP forwarding because your SMTP listener won't
return OK unless the message can be delivered or at least spooled
for later delivery.

Also, performance improved (though not so you'd notice it in
a single run). Another not insignificant benefit of this change was
that the manual page got a lot simpler.

Later, I had to bring delivery via a user-specified local MDA
back in order to allow handling of some obscure situations
involving dynamic SLIP. But I found a much simpler way to do it.

The moral? Don't hesitate to throw away superannuated
features when you can do it without loss of effectiveness. Antoine
de Saint-Exupéry (who was an aviator and aircraft designer when
he wasn't authoring classic children's books) said:

13. “Perfection (in design) is achieved not when there is
nothing more to add, but rather when there is nothing more to
take away."

27

X =B T — BT E], HE O 2 M AR L T
AR H popclient FIEFH - #Hig b, AT LIS EH
forward X #FEL sendmail BRHE 7 SRR 1S AH R AR5 -
FESLER R, IXFERHL AT RES L ALK

B —EHFXEM T, R IERHE - WS ESE
REMMHTHERT . WERSH T Ke—HFHEINFERER
4% MDA FIFH P 5aTT 88, BUATEHROEEMRIERS
B CHPE -

MmH, MWE—alREERIAREANT « WRIREER
SEB TR T WS, RIOEREEREE T o X7E SMTP 4%
BHASRE, RARIAEMMERIN G 2SR DRE T,
SMTP (B My A2 45 LAFIA -

mHE, HaEREs T (RENSRAEMZT— IR EER
2P o MR AN IER]INAT B b2 1 BE T E
WTHZ -

JER, TN TR —LEy BB SLIP (Serial Line
Internet Protocol, T4 HECMTMY) AIMAIETE, B2
NG DT PR E S MDA SBE ThEEn [E 5 - (H2F Ik
BT — R Z BIERIME -

U T 2AEHE? AR AEL T, AERBITE
o T REEETIE . MW ERA] K, (MWAESIEE) LER
PRI R AT R WHLETTI) i

13) “EITARISERMEME, AR IS AGEFEHE N
T~ MR EEAEEFRLD T .

*%1E. Antoine de Saint-Exupéry, (INEF) HIEH

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

When your code is getting both better and simpler, that is
when you know it's right. And in the process, the fetchmail design
acquired an identity of its own, different from the ancestral
popclient.

It was time for the name change. The new design looked
much more like a dual of sendmail than the old popclient had;
both are MTAs, but where sendmail pushes then delivers, the new
popclient pulls then delivers. So, two months off the blocks, I
renamed it fetchmail.

There is a more general lesson in this story about how SMTP
delivery came to fetchmail. It is not only debugging that is
parallelizable; development and (to a perhaps surprising extent)
exploration of design space is, too. When your development mode
is rapidly iterative, development and enhancement may become
special cases of debugging—{fixing ‘bugs of omission' in the
original capabilities or concept of the software.

Even at a higher level of design, it can be very valuable to
have lots of co-developers random-walking through the design
space near your product. Consider the way a puddle of water finds
a drain, or better yet how ants find food: exploration essentially by
diffusion, followed by exploitation mediated by a scalable
communication mechanism. This works very well; as with Harry
Hochheiser and me, one of your outriders may well find a huge
win nearby that you were just a little too close-focused to see.

28

BRI ER O B S AR, SXEHMRFLEE -
TIEHLT o fFEXMEFER, fetchmail B&THRE TEED
FIEFE, B T E—RH) popclient .

B T Z A F IR T o BRI FIZ R popclient 18
., FBE—1 sendmail FINFF; —FEE MTA, H
sendmail ;e & L FHH#GE, #THY popclient B HET R HHR
e FTUFES T A, RIBTEEGL N fetchmail -

XD SMTP # Z DRER Tt fetchmail B S5,
A—NEERKZE . A AORIAE R FFTH; TR R#
RITTEE (R RES NIZIRAIRERE B) i o SRIITT &R
R PRAE RN, JT A FNE0HA Al RERC I AR5 —
M IE B A SR R 8T A B A AR R R R

AR — R IREsOT B, B LRI 2 & IR R
dn BT 2 (R FRERE LT RE AT LU AR A IMERT - BF— K —
MK BRI IO, BEESS—A, BEUE LI
BYIH): AR ELIOEORER, RE — DR RAE L
IR « X — s REH; RIS —EE, IRITRE
FHH— MR BRI — P EM—F NI REET —
A AE]

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Fetchmail Grows Up

There I was with a neat and innovative design, code that [
knew worked well because I used it every day, and a burgeoning
beta list. It gradually dawned on me that [was no longer engaged
in a trivial personal hack that might happen to be useful to few
other people. I had my hands on a program that every hacker with
a Unix box and a SLIP/PPP mail connection really needs.

With the SMTP forwarding feature, it pulled far enough in
front of the competition to potentially become a "“category killer",
one of those classic programs that fills its niche so competently
that the alternatives are not just discarded but almost forgotten.

I think you can't really aim or plan for a result like this. You
have to get pulled into it by design ideas so powerful that
afterward the results just seem inevitable, natural, even
foreordained. The only way to try for ideas like that is by having
lots of ideas—or by having the engineering judgment to take other
peoples' good ideas beyond where the originators thought they
could go.

Andy Tanenbaum had the original idea to build a simple
native Unix for IBM PCs, for use as a teaching tool (he called it
Minix). Linus Torvalds pushed the Minix concept further than
Andrew probably thought it could go—and it grew into something
wonderful. In the same way (though on a smaller scale), I took
some ideas by Carl Harris and Harry Hochheiser and pushed them
hard. Neither of us was “original' in the romantic way people think
is genius. But then, most science and engineering and software
development isn't done by original genius, hacker mythology to
the contrary.

29

Fetchmail %k X7

ARG T — NPT, BaE A TIE R
RN R KA beta M4 R E RN - FISIEAA
H T EAHEEE—ATREX L NG BRI A\
o AT DFITEIE Unix HLEsF1 SLIP/PPP HR4EHE: O
I P ER TR ERIRRST -

W SMTP %% & KIThEER] fetchmail 78 5% X4 - [fij
DIEREN, P _EATRER R — N RBRF —IFFE T R
AE BT B AN AR LA TX5 AT i 7 1 1 2L # et
BT

B X st B S AT IB AN A SR AT o R R
KEPEITAE, REICAREEN IR, T H A Ratig 2
ANTLBEGRI) « RIRET ~ ERaTHIERER o (B RIX M AR I HE
—TEMRER R LB E— B G TRERYEREB A A
8T B S A AR AN B R 2

@ NER (Andy Tanenbaum) & T —MNEIEE
B, TE— 180 IBM 3RENLIE L Unix, (ER#EEETEE
A (fBFRZ R Minix) o SREIET-FEFLZEIE Minix BORE &
AR T 2] EARAR AR P —— A A T — AW
IZRTE - SR ML RTE DN —LEHE L) | FAFRIR:
ne SELETFNRE]y SR B SR E B HE) e K
ITEEE AT R A VR AR S HR RO AR R AIME” o (H A2
[E3F, ZERE - BORFIEAEF & AR H IR BRI R A FERL
), mMeMk, RATERE— K-

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

The results were pretty heady stuff all the same—in fact, just
the kind of success every hacker lives for! And they meant I would
have to set my standards even higher. To make fetchmail as good
as [now saw it could be, I'd have to write not just for my own
needs, but also include and support features necessary to others
but outside my orbit. And do that while keeping the program
simple and robust.

The first and overwhelmingly most important feature I wrote
after realizing this was multidrop support—the ability to fetch
mail from mailboxes that had accumulated all mail for a group of
users, and then route each piece of mail to its individual recipients.

I decided to add the multidrop support partly because some
users were clamoring for it, but mostly because I thought it would
shake bugs out of the single-drop code by forcing me to deal with
addressing in full generality. And so it proved. Getting RFC 822
address parsing right took me a remarkably long time, not because
any individual piece of it is hard but because it involved a pile of
interdependent and fussy details.

But multidrop addressing turned out to be an excellent
design decision as well. Here's how I knew:

14. Any tool should be useful in the expected way, but a truly
great tool lends itself to uses you never expected.

The unexpected use for multidrop fetchmail is to run mailing
lists with the list kept, and alias expansion done, on the client side
of the Internet connection. This means someone running a
personal machine through an ISP account can manage a mailing
list without continuing access to the ISP's alias files.

Another important change demanded by my beta-testers was
support for 8-bit MIME (Multipurpose Internet Mail Extensions)
operation. This was pretty easy to do, because I had been careful

30

R — R MREZ BRI —=E b, FERE—
AN BEATEEARSESRBRFIAL TN | T H X RS B RS AR,
MBS S - F T ik fetchmail 5% FoX i EA 17K
o, BANMUN H CRIFRERmEE, T HZEaFEFSCFr A
VTR ISR T T A PLE 2 SNFITIRE « X R A R If ZE R R R
JF T BRLAE ST

BIREX S22 G, BRTERE— R S EEN—
NIRERERIE — N —FEF P ARG 58 BB E2RAPT
HHERERCE, SREHEE—H 9 LA BRMEREA -

B ER I BN L ThEERR > L2 F W A IvE 2,
RMEERF N R WG ESEFRET ST RSSO
HIREEAT RS, TR AR R . R
TR - FAE T A K AR [R] 4 RFC 822 Bttt
E, NEENER—E R, mEENEW R T —HMH
BRI SUNIE R

SN R ECH T —WEFS PR R AE - X
HIFE Y

14) {Ef—TEENZIARITHM AL, HE2—1
EIEBI T ESH SRR N RTIEIASN AR A

fetchmail FPEEARICA BN FIUHA RO D RE 2 RIS EF 51 =]
DAFE W 45 B 0 P im R S RPN 2 R - X, R
AWLE ISP _E R — N A EFEEA] ISP 7RISR T R
SR AT DL — RS 2

B beta Mt AN ERA B — N EEZDEHF 8 i
[MIME #1E - X MRE S, FARCER/IVOHIREF T 8

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

to keep the code 8-bit clean (that is, to not press the 8th bit,
unused in the ASCII character set, into service to carry
information within the program). Not because I anticipated the
demand for this feature, but rather in obedience to another rule:

15. When writing gateway software of any kind, take pains to
disturb the data stream as little as possible—and never throw
away information unless the recipient forces you to!

Had I not obeyed this rule, 8-bit MIME support would have
been difficult and buggy. As it was, all I had to do is read the
MIME standard (RFC 1652) and add a trivial bit of header-
generation logic.

Some European users bugged me into adding an option to
limit the number of messages retrieved per session (so they can
control costs from their expensive phone networks). I resisted this
for a long time, and I'm still not entirely happy about it. But if
you're writing for the world, you have to listen to your customers
—this doesn't change just because they're not paying you in
money.

A Few More Lessons from Fetchmail

Before we go back to general software-engineering issues,
there are a couple more specific lessons from the fetchmail
experience to ponder. Nontechnical readers can safely skip this
section.

The rc (control) file syntax includes optional "noise’'
keywords that are entirely ignored by the parser. The English-like
syntax they allow is considerably more readable than the
traditional terse keyword-value pairs you get when you strip them
all out.

31

NACHETE . (S, IE A ASCI FREF A A
F 8N HEEEHRFHNEER) « NERARIBET X
ANINREESR, THEEIE T B —)

15) FEGAEAE O MFRIRHE, 1658 Th5k Rl fE e
T EIER—FRIEH P AR, AGEAREEEAE R

BRI ESFX NN, 8 i MIME SZHF &R IR M A
ERAW . FX L, BRITFEMAINOGRIE—T MIME i
(RFC 1652) , #IN—5&/ N INE SRSk A= CEI

FE—LERN A P RIZER T, BafSIn T — e IR R
BRGERRAE MBI E OXEEARATRT DA AR T & 52 /Y
RIEDR) o B X RIS TR — B E, BRI DA
AN - BRWRIRG NIRRT, RAGAR
R B B —— R EAR AT T A IR B R X e

Fetchmail % %t X € IL& %%

EFATE B R AP TR g5, fetchmail %2
[B JLEZ R SRR o AERR MR 7] DLZE 2 Bk
FFX—7

re SISO VR 3 T — 52 RN AT
R SR - AT AR D R R R S
4B TR 5 BRI B P 954 T35 i — 3 o7
B S .

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

These started out as a late-night experiment when I noticed
how much the rc file declarations were beginning to resemble an
imperative minilanguage. (This is also why I changed the original
popclient ““server" keyword to ““poll").

It seemed to me that trying to make that imperative
minilanguage more like English might make it easier to use. Now,
although I'm a convinced partisan of the ““make it a language"
school of design as exemplified by Emacs and HTML and many
database engines, I am not normally a big fan of **English-like"
syntaxes.

Traditionally programmers have tended to favor control
syntaxes that are very precise and compact and have no
redundancy at all. This is a cultural legacy from when computing
resources were expensive, so parsing stages had to be as cheap and
simple as possible. English, with about 50% redundancy, looked
like a very inappropriate model then.

This is not my reason for normally avoiding English-like
syntaxes; I mention it here only to demolish it. With cheap cycles
and core, terseness should not be an end in itself. Nowadays it's
more important for a language to be convenient for humans than
to be cheap for the computer.

There remain, however, good reasons to be wary. One is the
complexity cost of the parsing stage—you don't want to raise that
to the point where it's a significant source of bugs and user
confusion in itself. Another is that trying to make a language
syntax English-like often demands that the ""English" it speaks be
bent seriously out of shape, so much so that the superficial
resemblance to natural language is as confusing as a traditional
syntax would have been. (You see this bad effect in a lot of so-
called "“fourth generation" and commercial database-query

32

XTI F— MR LR —H FIEEZ R re HE
MHFHERRE 2 G — MHENIESIES - (XWER N
248 popclient B A f8erver” e B #L A T poll” -)
HEPRE, BHEXIMHATESES MG RIIE RS
EEASEH . RERIEE e —I TEE &t
TIR—t 1% Emacs 1 HTML FiF £ 55098 15 5 | 2 e oR R
FE—MERE, AR Er IR T R B "B -

ROt b, R ST TR EERE - ERETLR
AR o X R B & o B BRSO B, BRAS A
Pt BEAEA R AT RERI RN AT 8 - AR, KHEE 5026710
REOTEERREE—TEENEGEIES

XA B — M s BB OB E R, X LIREE
BN TN EE . B T HEEMEAFIZL, BiEAN
YN T EEENS o I TE S AT AR R S T
MU BRI Z

IRMBA TR EFTE DR E « Kz — @ 22 r
BN A—R AR E R &SR E 7 & U A R
o FHoh, B TEE R MG B8 FEMTE
PR R i T EH Y, DR T BRIES 1R
BB GEGEE S N . (RAT LR Z FnE
RS I A AT L AR E R RE 5 B FIX MRRER .)

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

languages.)

The fetchmail control syntax seems to avoid these problems
because the language domain is extremely restricted. It's nowhere
near a general-purpose language; the things it says simply are not
very complicated, so there's little potential for confusion in
moving mentally between a tiny subset of English and the actual
control language. I think there may be a broader lesson here:

16. When your language is nowhere near Turing-complete,
syntactic sugar can be your friend.

Another lesson is about security by obscurity. Some
fetchmail users asked me to change the software to store
passwords encrypted in the rc file, so snoopers wouldn't be able to
casually see them.

I didn't do it, because this doesn't actually add protection.
Anyone who's acquired permissions to read your rc file will be
able to run fetchmail as you anyway—and if it's your password
they're after, they'd be able to rip the necessary decoder out of the
fetchmail code itself to get it.

All .fetchmailrc password encryption would have done is
give a false sense of security to people who don't think very hard.
The general rule here is:

17. A security system is only as secure as its secret. Beware
of pseudo-secrets.

33

fetchmail PIFEHIEE IR R T X LR, FHAER
HE DA E R - ER— 8RS A Ll
JL; ERRIEEERILNE S, FrUEREN— MM F
B2 BLRNSERT b TS HIVE S 2 (134T i 7 i & 2B R B]
BEPEAR/N o X B AT REE — 1 HHE 25

16) SREVES BRI R S RIDEFTIRHE, | A
FENN SR AT LI # B

BRI R TR R L e . —2 fetchmail
R P B SRR B — N SR I 25 O B B A7 A re 355415
HE, XIHEARERASHETLETEIEN] .
BB RS, FRX PR EHANSIINGRE - NEERE, &
AT — AU T AR SR A re SCHER N B AT DU /R —RE Sk
21T fetchmail—an SR A A T B FIR AR ARG, A TAT LA
M fetchmail R AR & H 3B KL BRI 2ok 15 F -
FiE .fetchmail Z5H5 N2 BE MR 45 IR LA E 4 OB %S /)
N—FRE B2 AR o X B — M p U 2

17) — " Z2 25N E2EEURT ERSF IR %
2. IO o

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Necessary Preconditions for the Bazaar Style

Early reviewers and test audiences for this essay consistently
raised questions about the preconditions for successful bazaar-
style development, including both the qualifications of the project
leader and the state of code at the time one goes public and starts
to try to build a co-developer community.

It's fairly clear that one cannot code from the ground up in
bazaar style [IN]. One can test, debug and improve in bazaar style,
but it would be very hard to originate a project in bazaar mode.
Linus didn't try it. I didn't either. Your nascent developer
community needs to have something runnable and testable to play
with.

When you start community-building, what you need to be
able to present is a plausible promise. Your program doesn't have
to work particularly well. It can be crude, buggy, incomplete, and
poorly documented. What it must not fail to do is (a) run, and (b)
convince potential co-developers that it can be evolved into
something really neat in the foreseeable future.

Linux and fetchmail both went public with strong, attractive
basic designs. Many people thinking about the bazaar model as |
have presented it have correctly considered this critical, then
jumped from that to the conclusion that a high degree of design
intuition and cleverness in the project leader is indispensable.

But Linus got his design from Unix. I got mine initially from
the ancestral popclient (though it would later change a great deal,
much more proportionately speaking than has Linux). So does the
leader/coordinator for a bazaar-style effort really have to have
exceptional design talent, or can he get by through leveraging the
design talent of others?

34

T AR R A 0 sl AT 4R

T et S) S B (3] 5 RIS T AR TR 2l AR T B i
KIS TF & FORTHEFE A8, EFE T H 415 A BE BRI AL
I B AT MR E i A VEE AL X B AR FFACAEIR S

REIRE, EHENIEBIRAFENE T TAHEE - /RAT LA
FETENRERN - R, ERUTEESZT 1
i B2 2 REMER « MROTEEE X . JEEE - R
BRI A B X B EREB AT AN R TR R G F

YRR R EIE R i, RFEREEZEM— 1T
Al o IREVEEFA— B L/ERAER LT - Bl USRS -
M2 2 1~ AT S0 SOIERE - B— AN FERI
Pe (1) fEizfr, (2) UIRIBAERIA1EE ©rl LIZER T
TR AR AR B IE IR AR T -

Linux 1 fetchmail FF AR iR A 5850 ~ 5] A1
BEARFIT o BRI BARER B T B B
HINIX— SR KB, TRIAMmMTEEmMBESMFAS L, &
5 BT RN B AN A B R

B EMRGNIR T3 B F Unix . AIH©IEB T5EE]
1] popclient (REEFRZWIRA, #HILFPRIL Linux
MRIZ) « IBA—1PHENRPTESES A ERHFAR
—EZE NI R, B2 DIE R T T d#a
N A T A SR ER?

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

I think it is not critical that the coordinator be able to
originate designs of exceptional brilliance, but it is absolutely
critical that the coordinator be able to recognize good design ideas
from others.

Both the Linux and fetchmail projects show evidence of this.
Linus, while not (as previously discussed) a spectacularly original
designer, has displayed a powerful knack for recognizing good
design and integrating it into the Linux kernel. And I have already
described how the single most powerful design idea in fetchmail
(SMTP forwarding) came from somebody else.

Early audiences of this essay complimented me by
suggesting that I am prone to undervalue design originality in
bazaar projects because I have a lot of it myself, and therefore take
it for granted. There may be some truth to this; design (as opposed
to coding or debugging) is certainly my strongest skill.

But the problem with being clever and original in software
design is that it gets to be a habit—you start reflexively making
things cute and complicated when you should be keeping them
robust and simple. I have had projects crash on me because I made
this mistake, but I managed to avoid this with fetchmail.

So I believe the fetchmail project succeeded partly because |
restrained my tendency to be clever; this argues (at least) against
design originality being essential for successful bazaar projects.
And consider Linux. Suppose Linus Torvalds had been trying to
pull off fundamental innovations in operating system design
during the development; does it seem at all likely that the resulting
kernel would be as stable and successful as what we have?

A certain base level of design and coding skill is required, of
course, but I expect almost anybody seriously thinking of
launching a bazaar effort will already be above that minimum. The

35

B EFFRAGEGAE A HALE AT AR IR b,
EAEN AR, ERFAARERS AR IAF At A B 5515t
A .

Linux 71 fetchmail #5 B &R 7R 73X 77 T AJUESE - AR
e, (RETE IR RENE— MR RO
I, FEM T IRAMEF T HIEE SR Linux W% R
SRR BE . Foth DR T £E fetchmail BRI&E HHI—1
Wit B (SMTP# %K) EFEREETH—T A

X L E R R ER R R A SRS T H B
st R IR E, FARBCERE, EMmtE SR
ST o XIERNE — S ESHAERRE, vt (Mg
SRig e R) ST A5 .

(BRI B RIBEBE A E15E 77 1 87 T B TR —FH
NS ——4 VR RLZ PR S5 R[S AT 187 B S8, URF IR L
EHIECA TR EF A E 2% « B ZE ML T XM EERIE
Highst, (BRI fetchmail B T BEFX MR R -
B IS ARAE fetchmail T H I RENER 43 LR R B sEhilfE T
BEFREARSIN; X (D) R Tt R B =2 s Eh 1
T H AR . 7 HAE—"FLinux. BOXHRGNET-FE R 25
T A& iR R R E R RO ROIR AL BT, (R SR
FEAR L AT RES AR TIRAE 15X 2 Fa e MR TG ?

MIR—E NI RS B RE R R AL 2 V2R, (B
RHRIHLFEMAESELE— " TEMTIEHA TS

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

open-source community's internal market in reputation exerts
subtle pressure on people not to launch development efforts
they're not competent to follow through on. So far this seems to
have worked pretty well.

There is another kind of skill not normally associated with
software development which I think is as important as design
cleverness to bazaar projects—and it may be more important. A
bazaar project coordinator or leader must have good people and
communications skills.

This should be obvious. In order to build a development
community, you need to attract people, interest them in what
you're doing, and keep them happy about the amount of work
they're doing. Technical sizzle will go a long way towards
accomplishing this, but it's far from the whole story. The
personality you project matters, too.

It is not a coincidence that Linus is a nice guy who makes
people like him and want to help him. It's not a coincidence that
I'm an energetic extrovert who enjoys working a crowd and has
some of the delivery and instincts of a stand-up comic. To make
the bazaar model work, it helps enormously if you have at least a
little skill at charming people.

36

H T IX N ALK o FRURAE X PN ER A A LHI A AT b
WL [WRREEILERTF, | AELEE AT
ERFRIE - 251k, X—s5lP T/EERERL -
FENE — PRI & — R TC R IERE, BN TR
IE RV, FRit A e EE—E R EE . —
fﬁ%ﬁﬁ%iﬁkﬁ%@%%ﬁﬁﬁﬁ%kﬁ\Tﬁ&
HE o

XN VZAE RS R . B — AR, RFFER
SINEE, AT IR SEBRSE, I ik T 5L
P TAEEE L - BEMEX—5, PHFESERREE
H, i A BN 2E . RIS HRES .

PRGN E— D Z RN, AL AMTENR M~ AER B fl—
XAEITE - HRMERINAIN, EXFARTOE, §
& — LI ERIEA N ER AT —XANZITE - B
SRZGEITER, REDE —m L ATTERIR AR R
HHEEH

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

The Social Context of Open-Source Software

It is truly written: the best hacks start out as personal
solutions to the author's everyday problems, and spread because
the problem turns out to be typical for a large class of users. This
takes us back to the matter of rule 1, restated in a perhaps more
useful way:

18. To solve an interesting problem, start by finding a
problem that is interesting to you.

So it was with Carl Harris and the ancestral popclient, and so
with me and fetchmail. But this has been understood for a long
time. The interesting point, the point that the histories of Linux
and fetchmail seem to demand we focus on, is the next stage—the
evolution of software in the presence of a large and active
community of users and co-developers.

In The Mythical Man-Month, Fred Brooks observed that
programmer time is not fungible; adding developers to a late
software project makes it later. As we've seen previously, he
argued that the complexity and communication costs of a project
rise with the square of the number of developers, while work done
only rises linearly. Brooks's Law has been widely regarded as a
truism. But we've examined in this essay an number of ways in
which the process of open-source development falsifies the
assumptionms behind it—and, empirically, if Brooks's Law were
the whole picture Linux would be impossible.

Gerald Weinberg's classic The Psychology of Computer
Programming supplied what, in hindsight, we can see as a vital
correction to Brooks. In his discussion of *“egoless programming",
Weinberg observed that in shops where developers are not
territorial about their code, and encourage other people to look for

37

TR AR AR B AL 2B B

XANEEE] T4 sFRIRRF G TES B R
MNNRRF R, FHN— KA EFEE XA R RAT - X
ERATHE T HE—FEZ2RANE, H—MeaFEEH =
P STy

18) Efpk— 1 EREMRE, &HEERE— MRS
HEERRE .

KRS BERAISE R B popclient EiXFERY, FoAd
fetchmail XM . HEXSAXCEHARAT - B
B H— A5, Linux f fetchmail B R B SEESRF A%
D —FE, N B———FER P REEETER T
KA R PRk DX RS R AR T4

£ CAAME) B, 9B RE W RAR TR AR
BB ANRERER ML, AN & A G iE REe R 2s
SERAROPAETI H BN SERE - BRI TR R 19, fhibiR T
I B W E ZAREAE AR T 2 N A B P hn,
WA AE &GN - A E g 2 i A E B3 . (B7E
X XER, BICEHEST 7T BT AEERESE
FIFE B LR R ——T B ESEUERE, SRS AN ST
—1J], Linux #tAIEEA 4 -

DIEEZER, NuE-ZRMAERNER (R
FEEPOHE2E) M T — XIS R RBELE « e Te
IR e B, ZRAMIERE—H FrAF A AN A
T H CRRS EHNZE T sl i ATEE R SRR

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

bugs and potential improvements in it, improvement happens
dramatically faster than elsewhere. (Recently, Kent Beck's
‘extreme programming' technique of deploying coders in pairs
looking over one anothers' shoulders might be seen as an attempt
to force this effect.)

Weinberg's choice of terminology has perhaps prevented his
analysis from gaining the acceptance it deserved—one has to
smile at the thought of describing Internet hackers as "“egoless".
But I think his argument looks more compelling today than ever.

The bazaar method, by harnessing the full power of the
“egoless programming" effect, strongly mitigates the effect of
Brooks's Law. The principle behind Brooks's Law is not repealed,
but given a large developer population and cheap communications
its effects can be swamped by competing nonlinearities that are
not otherwise visible. This resembles the relationship between
Newtonian and Einsteinian physics—the older system is still valid
at low energies, but if you push mass and velocity high enough
you get surprises like nuclear explosions or Linux.

The history of Unix should have prepared us for what we're
learning from Linux (and what I've verified experimentally on a
smaller scale by deliberately copying Linus's methods [EGCS]).
That is, while coding remains an essentially solitary activity, the
really great hacks come from harnessing the attention and
brainpower of entire communities. The developer who uses only
his or her own brain in a closed project is going to fall behind the
developer who knows how to create an open, evolutionary context
in which feedback exploring the design space, code contributions,
bug-spotting, and other improvements come from from hundreds
(perhaps thousands) of people.

38

PR R ——EX By, PO R R B RAR S
(B, HHF DUm IR IR E " BOR——IE R e & B Lk
AT LA 2R B ——mlr AT LUR PR R SR X — R 2l)
2 BMEAS AL R L pnde B T REREAS 1 th A o3 AT IR A5 DA A
A —— B BRI AN AT SO —F, SERIX
FERIRSK LR L2 ASE/R « ERBIARIFIRES KER
o EC AR AR AR (A BE LR A (B AR -

MR, Ed B TR " RCR AR EEN 7T, 3 A
SR T AS SOIRMAROR o A8 SR e HO R IR o
B, BRE T —MERITZEREME MrrndEin, e
KR AT LB AN AT BT 32 A AR Ltk R 2R AT i - X
ARG AN 2 R 3 HE 2SR B 2 8]) 5k R ——IH B R ST R
REE MMINER, (HARIET SR B 2045 2 08 K IRy
fie, AREUEE] T anRIAZARKEE Linux AREEROR T -

Unix FO7 58 ROZES A TS Linux B45 5% (Figk
FE/ANIUE -7 BB DU) 7 R AT SE R A RIS R) BT
ODFRER o XV, B R LR —F A AH R
TGS, BEIERBHOREFR B T X AEE
Te —MEHHRMIE T RFEH BRI FLE, ¥ehm
YE— A FECE BRI — TR ~ SRR ——
AT 8B T NIRRT A IR S - SmiE ik - R
G H T G ——RO T A

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

But the traditional Unix world was prevented from pushing
this approach to the ultimate by several factors. One was the legal
contraints of various licenses, trade secrets, and commercial
interests. Another (in hindsight) was that the Internet wasn't yet
good enough.

Before cheap Internet, there were some geographically
compact communities where the culture encouraged Weinberg's
“egoless" programming, and a developer could easily attract a lot
of skilled kibitzers and co-developers. Bell Labs, the MIT Al and
LCS labs, UC Berkeley—these became the home of innovations
that are legendary and still potent.

Linux was the first project for which a conscious and
successful effort to use the entire world as its talent pool was
made. I don't think it's a coincidence that the gestation period of
Linux coincided with the birth of the World Wide Web, and that
Linux left its infancy during the same period in 1993—1994 that
saw the takeoff of the ISP industry and the explosion of
mainstream interest in the Internet. Linus was the first person who
learned how to play by the new rules that pervasive Internet access
made possible.

While cheap Internet was a necessary condition for the Linux
model to evolve, I think it was not by itself a sufficient condition.
Another vital factor was the development of a leadership style and
set of cooperative customs that could allow developers to attract
co-developers and get maximum leverage out of the medium.

But what is this leadership style and what are these customs?
They cannot be based on power relationships—and even if they
could be, leadership by coercion would not produce the results we
see. Weinberg quotes the autobiography of the 19th-century
Russian anarchist Pyotr Alexeyvich Kropotkin's Memoirs of a

39

BB JILTEEMLL T ESE Unix R TTEL

ERIRE . — 1 RBAFHEREAT - B G EAR LA 28 9%
ARSI - H—1 (BEELRE) ZEEMAEABLET -
FEMRE A E B 2 B i — St e p R B R, S b
BN A TCRAIRAE” - — DA B T LA S K5 | 2
—REKFREM"FEEE - IURSKREE - FEETHA
TR BN E « AR K E——X LR h T %
PR PR SR SRS 1) & BRI 2K [

Linux 25— METERIRE - BRI ke att 7
MYEBPEEMAAIAE - AL Linux)22 E 15 BB
FIMEAE SR —1I54, Linux 76 1993 —1994 7 [A] M 4%
RR 55 MU A S5 R BB A A SRR 4R R A BRI B S T E Y
SR UBHR AT A o RGN 2 S — 2 S R I) BBk
W B PR BT SRAZE N

E IR E A B BE W A Linux A0 HEIL H Sk Fr i B 45
KRBT HOINERTFMY . A RBENRE S S
KREFN— A VEH B A0 L —— 15 7 & &] LIS | & 1E
F B HR BRI RR -

{BAT 2 XA T XA « AT 4B X LI R? EATANAT
REE T R AN —EE R, BHIERMEAST
ERNFERNPRR . X MEE L, TR ABRE S
ST 19 HARP B eEUN I L& Pyotr Alexeyvich

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Revolutionist to good effect on this subject:

Having been brought up in a serf-owner's family, I entered
active life, like all young men of my time, with a great deal of
confidence in the necessity of commanding, ordering, scolding,
punishing and the like. But when, at an early stage, I had to
manage serious enterprises and to deal with [free] men, and
when each mistake would lead at once to heavy consequences, |
began to appreciate the difference between acting on the
principle of command and discipline and acting on the principle
of common understanding. The former works admirably in a
military parade, but it is worth nothing where real life is
concerned, and the aim can be achieved only through the severe
effort of many converging wills.

The *'severe effort of many converging wills" is precisely
what a project like Linux requires—and the *“principle of
command" is effectively impossible to apply among volunteers in
the anarchist's paradise we call the Internet. To operate and
compete effectively, hackers who want to lead collaborative
projects have to learn how to recruit and energize effective
communities of interest in the mode vaguely suggested by
Kropotkin's *“principle of understanding". They must learn to use
Linus's Law.[SP]

Earlier I referred to the “*Delphi effect" as a possible
explanation for Linus's Law. But more powerful analogies to
adaptive systems in biology and economics also irresistably
suggest themselves. The Linux world behaves in many respects
like a free market or an ecology, a collection of selfish agents
attempting to maximize utility which in the process produces a
self-correcting spontaneous order more elaborate and efficient
than any amount of central planning could have achieved. Here,
then, is the place to seek the “principle of understanding".

40

Kropotkin FJ H% (—PEaEHHIEIZT) -

T MRIENRE, Bt AZE, BIID
BHMEFTE RERE A, REMAEES . md - T &
TEEERLENE - (HEERHBRANENEHER KEALM
KA B ANTRERE, BN EREE L2 S 2™
G REIRE, RIFRSUERIIEIE MR ENTES
LRI A R AT SR 2 R XA - JiisE AP SeaUhistT
B NFAL, AR ELENAERNS, E8—3CME; 1
H B RV 2 3R B S R 685 1 4 REE I -

X VR IR RS R S) " IR Linux JXMIR H BT
BRI AR FATUE LR R TCBUR £ R E B
REBENTHE SRR EH5E ERAATRER . ZARK
Hs RS, BEMSFIMERTH BRI AMEAERE
FEH% B Kropotkin i)] 2 i e S U] BSR4 H A
2 R BTGB A A RAL X o AR AT T2 & AR
ANHIRI -

R IeT I TR SR " VRO AR A) — > T AT Y
R (B2 5 EYIALEST PR RSN RS E T R A
AR H R EIHIOE - Linux 5 7E1R 2 77 R R I 2
BB SEES RS B ERRAEEB R — M EED)
MERAMHES, X NI REPEA T — 1 BRUENEA
MF—EHWAEZ D AR RIE rREA R R R T
ZAER . Ao, X BT 3 SR AR " i 7 -

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

The "utility function" Linux hackers are maximizing is not
classically economic, but is the intangible of their own ego
satisfaction and reputation among other hackers. (One may call
their motivation ““altruistic", but this ignores the fact that altruism
is itself a form of ego satisfaction for the altruist). Voluntary
cultures that work this way are not actually uncommon; one other
in which I have long participated is science fiction fandom, which
unlike hackerdom has long explicitly recognized **egoboo" (ego-
boosting, or the enhancement of one's reputation among other
fans) as the basic drive behind volunteer activity.

Linus, by successfully positioning himself as the gatekeeper
of a project in which the development is mostly done by others,
and nurturing interest in the project until it became self-sustaining,
has shown an acute grasp of Kropotkin's "“principle of shared
understanding". This quasi-economic view of the Linux world
enables us to see how that understanding is applied.

We may view Linus's method as a way to create an efficient
market in *'egoboo"—to connect the selfishness of individual
hackers as firmly as possible to difficult ends that can only be
achieved by sustained cooperation. With the fetchmail project I
have shown (albeit on a smaller scale) that his methods can be
duplicated with good results. Perhaps I have even done it a bit
more consciously and systematically than he.

Many people (especially those who politically distrust free
markets) would expect a culture of self-directed egoists to be
fragmented, territorial, wasteful, secretive, and hostile. But this
expectation is clearly falsified by (to give just one example) the
stunning variety, quality, and depth of Linux documentation. It is a
hallowed given that programmers hate documenting; how is it,
then, that Linux hackers generate so much documentation?
Evidently Linux's free market in egoboo works better to produce

41

Linux B A TR R TIROT R A2 2 AT
R, TSR] B R AT AN At B A A g e R LN
BIFIRTE . (B ASGFER LUEALITRS S Rk
7, AHIXZ28% T Rl 2 SCH B 5 RME SUE LR — R R
WRERX—FL .) XEEER BIEE U HEAEN
FHER; BEEZKESEN B—1HERLIM LG . ~ME
A AbATE R HAAIRE] T égoboo” (ego-
boosting, EUEHAM 22 RN AR E) 2EEETE
PE FEREARDNT

PRENET, Ed AR B BN — D EE R A AR
FEBTHEITA - BFEhxX AU E 4@ E 2 B LB
WAERF, FILT X Kropotkin® S [F] 35 7 i 5)~ s i
o XN Linux R AR FF 200 A FRRATREE)X
FhH R U N R A

FATAT LI T B EOLE R B B RE L T
TR — 5B F—IC B BRR B AR o] 6 R w0
RN« REEN LA EA ReRs B R L - 8
fetchmail Wi H, TEM T (REENDAEL) MAJTER
DIEH . AT R .. dorfkEEME it Ea =R
ARG —

REN LHBEBGR EAMEE BHTZRIL) 2L
1 BEIRENA NGt = SCEATTE A S 2 5 ST IR
SN E - KBRS - BAEER A RIHEGER . 2 X
VR RIRYE (REE—F1F) Linux SCRYER AR - i
EIREFTIED » 7 RRIRE SR AR R &R, R4,
Linux BEATEEREAT HIX 42 CREIWe? TR

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

virtuous, other-directed behavior than the massively-funded
documentation shops of commercial software producers.

Both the fetchmail and Linux kernel projects show that by
properly rewarding the egos of many other hackers, a strong
developer/coordinator can use the Internet to capture the benefits
of having lots of co-developers without having a project collapse
into a chaotic mess. So to Brooks's Law I counter-propose the
following:

19: Provided the development coordinator has a
communications medium at least as good as the Internet, and
knows how to lead without coercion, many heads are inevitably
better than one.

I think the future of open-source software will increasingly
belong to people who know how to play Linus's game, people who
leave behind the cathedral and embrace the bazaar. This is not to
say that individual vision and brilliance will no longer matter;
rather, I think that the cutting edge of open-source software will
belong to people who start from individual vision and brilliance,
then amplify it through the effective construction of voluntary
communities of interest.

Perhaps this is not only the future of open-source software.
No closed-source developer can match the pool of talent the Linux
community can bring to bear on a problem. Very few could afford
even to hire the more than 200 (1999: 600, 2000: 800) people who
have contributed to fetchmail!

Perhaps in the end the open-source culture will triumph not
because cooperation is morally right or software *“hoarding" is
morally wrong (assuming you believe the latter, which neither
Linus nor I do), but simply because the closed-source world
cannot win an evolutionary arms race with open-source

42

HIE E B ATER Bt Be - R BT
B AR ET SIS T -

fetchmail 27 H A1 Linux %50 H &R AH, @@ 24 59
KEMEZ HMEREN egos, — MBI EE /A&
DU B R SRIBOGRIAE o 2 A1 EE AL, TAZ Tk
HFaARE 2P RREL o BT AR AR ez, O RE T
19) WL BIthiEEE — 12 /DR BB — T fiE i
Ay, EEE WA SEE RS, SN AT R A
HAL T B S i

TR IR IR R FE L 1B T IR E S i a T
MRATET ORI AT, SRR AR TR AL XA
AU AN A AT EE, ME, MIERFRRE
HIEIE 28 T AR 40 T AR WA A 1« SN fEE e B AL
IS e R T A ORI AT -

B AR IR AR o ZEXAT—AN R, %8
FIRETT & & 7] LGS I Linux 41 X BT RESR BhA A REZ AR -
W B NEEREREEITLLNT fetchmail EH T BTk
200 (1999: 600, 2000: 800) £ A !

TR 2 B R, BT AR Oy & 1 EAE RS L IE
B ERE EERR (BORIRAEE RS, WA
WA, TR E IR X AT DR — N[l AL LA
HERBAR LR - FRMFTEREXI I AN FE SR
%o

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

communities that can put orders of magnitude more skilled time
into a problem.

On Management and the Maginot Line

The original Cathedral and Bazaar paper of 1997 ended with
the vision above—that of happy networked hordes of
programmer/anarchists outcompeting and overwhelming the
hierarchical world of conventional closed software.

A good many skeptics weren't convinced, however; and the
questions they raise deserve a fair engagement. Most of the
objections to the bazaar argument come down to the claim that its
proponents have underestimated the productivity-multiplying
effect of conventional management.

Traditionally-minded software-development managers often
object that the casualness with which project groups form and
change and dissolve in the open-source world negates a significant
part of the apparent advantage of numbers that the open-source
community has over any single closed-source developer. They
would observe that in software development it is really sustained
effort over time and the degree to which customers can expect
continuing investment in the product that matters, not just how
many people have thrown a bone in the pot and left it to simmer.

There is something to this argument, to be sure; in fact, I
have developed the idea that expected future service value is the
key to the economics of software production in the essay The
Magic Cauldron.

43

% TG LGS

JRURHT 1997 FE/ (REEMTEE) 1w X LALL BRI
LER—TRF 0 TOBUN 25 S8 O SE AR W 53 (A i H 9 13
TAEGATRE A FIR B AR

INTT, IRZMNEEE HAMEMR; MR H AR BB ES—
DGR . ZEOT TR R TLEE] — S B
PSRBT MR, T o S R A B RIRR -

Z AR R & E R R TR T R B I H B TE
i — 3R 2E — VH T AIRE R R KHRIE T R R AL DX B A P R T
REELHE LR BRI, -]S HAEREGF £ 58,
HIEEZERE KA B ARSI 2 KRR E i AT LATH
XS P SRR BT, AR 2D N R — 3k
L EE -

EERN, XFEFIHERE; AL, FAEThe Magic
Cauldron”—3 H gt BRI/ T FEHR AR R IR S M B2 E
P25 BB ML A5, -

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

But this argument also has a major hidden problem; its
implicit assumption that open-source development cannot deliver
such sustained effort. In fact, there have been open-source projects
that maintained a coherent direction and an effective maintainer
community over quite long periods of time without the kinds of
incentive structures or institutional controls that conventional
management finds essential. The development of the GNU Emacs
editor is an extreme and instructive example; it has absorbed the
efforts of hundreds of contributors over 15 years into a unified
architectural vision, despite high turnover and the fact that only
one person (its author) has been continuously active during all that
time. No closed-source editor has ever matched this longevity
record.

This suggests a reason for questioning the advantages of
conventionally-managed software development that is
independent of the rest of the arguments over cathedral vs. bazaar
mode. If it's possible for GNU Emacs to express a consistent
architectural vision over 15 years, or for an operating system like
Linux to do the same over 8 years of rapidly changing hardware
and platform technology; and if (as is indeed the case) there have
been many well-architected open-source projects of more than 5
years duration -- then we are entitled to wonder what, if anything,
the tremendous overhead of conventionally-managed development
is actually buying us.

Whatever it is certainly doesn't include reliable execution by
deadline, or on budget, or to all features of the specification; it's a
rare ‘'managed' project that meets even one of these goals, let
alone all three. It also does not appear to be ability to adapt to
changes in technology and economic context during the project
lifetime, either; the open-source community has proven far more
effective on that score (as one can readily verify, for example, by

44

EREXFZFFLHE N FENEBERM: TR Ex
IR A& AR AFFEL IS)« B b, BRI E £
TR BR8] B AR T — B0 7 A E 54 F K, Tm
NFBEARGE T I 515 B AP LA 1 A5+ 8 R B 1 A
=i . GNU Emacs Jries i & & — MRS ~ 1B AR
I F: EAEEH 15 SRR EIRE T B BT ok E p
HEh BT — SRR, RE ANED I %
—HIFE T ROARE - (EREE) - EIERNRE
Y S XK FIEE

XEWN T — RS S E BRR S N T & IO S a2
H, S5EEXTRBCGEMTEEAPFVCNET B - 0
% GNU Emacs 7] I7E 15 FF B AR — 1 —EHEZR 1T,
B0 E — MG Linux FHR1E RS AE 8 5 22 BV AR AL R {4
PEFRHERI T R—5; R (ESERAH) FEF
LT RATFRI B H T 5 E/0 88— A B T L
REGETRIT & AT A BTNk T A—nRH
I -

NEEMN 4, EERNEIEZR - siE - sifrETs
EDNREMI P EEHUAT; BEf X BHirH (U —&e— 1 F
R ERBF"RIE T, EAHREE= %7 - TERN
ANEIEAET H #H TR IE N AR FFEME L RIRETT;
FEIX BT, FRURAE XUERE T mam B oA R CR 1 BAIAIX

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

comparing the 30-year history of the Internet with the short half-
lives of proprietary networking technologies—or the cost of the
16-bit to 32-bit transition in Microsoft Windows with the nearly
effortless upward migration of Linux during the same period, not
only along the Intel line of development but to more than a dozen
other hardware platforms, including the 64-bit Alpha as well).

One thing many people think the traditional mode buys you
is somebody to hold legally liable and potentially recover
compensation from if the project goes wrong. But this is an
illusion; most software licenses are written to disclaim even
warranty of merchantability, let alone performance—and cases of
successful recovery for software nonperformance are vanishingly
rare. Even if they were common, feeling comforted by having
somebody to sue would be missing the point. You didn't want to
be in a lawsuit; you wanted working software.

So what is all that management overhead buying?

In order to understand that, we need to understand what
software development managers believe they do. A woman I know
who seems to be very good at this job says software project
management has five functions:

e To define goals and keep everybody pointed in the
same direction

e To monitor and make sure crucial details don't get
skipped

e To motivate people to do boring but necessary
drudgework

e To organize the deployment of people for best
productivity

e To marshal resources needed to sustain the project

45

s HOTUR, AT RLHCECEL R R 30 SEATF SEAFAE M4
TR, B AL & AN 16 RrFe oy 32 ALK
A Linux [F—Bf 81 JLF 2 AR 7 T R—— A DU BISE
FHFRAS] BIF &, T HABT REEE 64 A Alpha it A i
TEDEARE & F)

R N8 M Sz Fp Il KB — AR 2 E A%
TV WEREBBL TR AT RESRME L - (B —P4)5
REFIHIFES TAREREZE R BRIE, EA
FHRPERE | ——1 BB RE R R_E S Ih R S R 2 61 D15
T REA] . BMEXRERTE, RovENIITERIM RO
GRARE T A BAEITE 7l BEERETIEREL
1 -

AR 2 X G TR BHER K T AT A WY

S A, B TR R E T &]
B AR« FOARE)— B IR LTS B 2o B R R I H
EHH LI EE:

o AR HIRHRFF AR F—A [R5
o IR A ORI B HOAH T A

o BN AN ERE R BT /1%)L
o HENGDEHRBE|HAELE T

o NI H FFELPT AR A BER

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Apparently worthy goals, all of these; but under the open-
source model, and in its surrounding social context, they can begin
to seem strangely irrelevant. We'll take them in reverse order.

My friend reports that a lot of resource marshalling is
basically defensive; once you have your people and machines and
office space, you have to defend them from peer managers
competing for the same resources, and from higher-ups trying to
allocate the most efficient use of a limited pool.

But open-source developers are volunteers, self-selected for
both interest and ability to contribute to the projects they work on
(and this remains generally true even when they are being paid a
salary to hack open source.) The volunteer ethos tends to take care
of the "attack' side of resource-marshalling automatically; people
bring their own resources to the table. And there is little or no need
for a manager to “play defense' in the conventional sense.

Anyway, in a world of cheap PCs and fast Internet links, we
find pretty consistently that the only really limiting resource is
skilled attention. Open-source projects, when they founder,
essentially never do so for want of machines or links or office
space; they die only when the developers themselves lose interest.

That being the case, it's doubly important that open-source
hackers organize themselves for maximum productivity by self-
selection—and the social milieu selects ruthlessly for competence.
My friend, familiar with both the open-source world and large
closed projects, believes that open source has been successful
partly because its culture only accepts the most talented 5% or so
of the programming population. She spends most of her time
organizing the deployment of the other 95%, and has thus
observed first-hand the well-known variance of a factor of one
hundred in productivity between the most able programmers and

46

B NMERE, PraXssgd; EEAETFIREN
N, FHECHBERESEST, IEeaEIT R EAA
FT o FARAZE Pt igiX LA -

AR ARV 2 BRI P AR B TUE R, — BAR
A TR N GHLES I AZE], ARAEAR DHE M 5 5
MR BER, ANEs 1 2 A A BR B R A i = s a4
ERTFFT 4 & 2 BB ~ AEX4EA P2 5 I H B TR RE
N EBRHER) (RN T FiK 8 TR H Jwhd r s
OLERXFM—HBOEN) - SEENR RS BRI
H“ e ATTHE B BB B S Lok o« i B & 3
BRI, H BB L ERIER TR L LA B I

ANEERE, AL PR R LB] 2 R T i 5
B, FAR—B x R IEME— R B ERE A SOREISS
1o FHFEIE A BT EMANE N T F3F ML aR B L B A 25 (6]
MRAL; ETRET 2% B RSB R RIE T -

FEIXRZEN, s IR R B A T B BokiEd
FURBI AT R— RIMFH IR AR RE I (ks -
HIARAC, IR SR AN R R PRI H R ZL 2, A THIR
RRINER O IHTH T E RS R IR N S P ol A 18R 596
FEA - BBAERR T MR R TR RS E oAt) 9506, T
B —FIRL TAEAR - HAFHRIFI A AR
A B —E EHRRE R -

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

the merely competent.

The size of that variance has always raised an awkward
question: would individual projects, and the field as a whole, be
better off without more than 50% of the least able in it?
Thoughtful managers have understood for a long time that if
conventional software management's only function were to
convert the least able from a net loss to a marginal win, the game
might not be worth the candle.

The success of the open-source community sharpens this
question considerably, by providing hard evidence that it is often
cheaper and more effective to recruit self-selected volunteers from
the Internet than it is to manage buildings full of people who
would rather be doing something else.

Which brings us neatly to the question of motivation. An
equivalent and often-heard way to state my friend's point is that
traditional development management is a necessary compensation
for poorly motivated programmers who would not otherwise turn
out good work.

This answer usually travels with a claim that the open-source
community can only be relied on only to do work that is “sexy' or
technically sweet; anything else will be left undone (or done only
poorly) unless it's churned out by money-motivated cubicle peons
with managers cracking whips over them. I address the
psychological and social reasons for being skeptical of this claim
in Homesteading the Noosphere. For present purposes, however, |
think it's more interesting to point out the implications of
accepting it as true.

If the conventional, closed-source, heavily-managed style of
software development is really defended only by a sort of Maginot
Line of problems conducive to boredom, then it's going to remain

47

XA ZERIE R ST A — MR rh . NE#
NI E SRR, BT BB 509 LA E SR E R
SEF—? HHMEEERALORRES, WRESK
HE R ME— IR R IR R E N —H AEI R N @A,
X LM AMERITHE -

FEIRAE X BTN, i B ARE L IR PR B oR A BB K 43
HEREENEESE S EE LS BRI S EE
PRI EEEME SN E, SRR LR T X
[

XAETFEEA T 2K B S . — D FEISERT B ILEY
F AR A ISR R R EHEEXN R Z5h 1
FEFF LR TS, AR TR TAE -

XA E B — M E — A R BERE R A X R
FheEZ H "B EAR DIFB TME, ERMETHSHR T (5
WATH) PRIEEERIX B A A RR [A] A AAEZS 38 THOHE
FNEEHHd . FFHomesteading the Noosphere” &
BRI A UEE PR BE B OB 2R ANt 22 R o IRTITRE = Bl)
B, BESEEWRBRECRERMTEHPELEER
Bl

WERABLIH) ~ AR ~ TURE R A 2 B A
TERRT | & BRRE R — S S HETESF LN, FAE

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

viable in each individual application area for only so long as
nobody finds those problems really interesting and nobody else
finds any way to route around them. Because the moment there is
open-source competition for a "boring' piece of software,
customers are going to know that it was finally tackled by
someone who chose that problem to solve because of a fascination
with the problem itself—which, in software as in other kinds of
creative work, is a far more effective motivator than money alone.

Having a conventional management structure solely in order
to motivate, then, is probably good tactics but bad strategy; a
short-term win, but in the longer term a surer loss.

So far, conventional development management looks like a
bad bet now against open source on two points (resource
marshalling, organization), and like it's living on borrowed time
with respect to a third (motivation). And the poor beleaguered
conventional manager is not going to get any succour from the
monitoring issue; the strongest argument the open-source
community has is that decentralized peer review trumps all the
conventional methods for trying to ensure that details don't get
slipped.

Can we save defining goals as a justification for the overhead
of conventional software project management? Perhaps; but to do
so, we'll need good reason to believe that management committees
and corporate roadmaps are more successful at defining worthy
and widely shared goals than the project leaders and tribal elders
who fill the analogous role in the open-source world.

That is on the face of it a pretty hard case to make. And it's
not so much the open-source side of the balance (the longevity of
Emacs, or Linus Torvalds's ability to mobilize hordes of
developers with talk of ““world domination") that makes it tough.

48

FERE— DR U R 77 et A TR B CE AL I X 2]
MEIEAEE - B ANLZRSEETRE. Fo—
H— gl B B T MRS R, T2 R0E %
THANE Y REX A FIRUA G ke SRR Y | ——iX—
mh ARG AR ST TAE—FE, 2 AR
BB E AR /] -

N TR ARBE—MEG R EEA, BFiE—
ANFRITTUR RROSRRS, JEIIRA L IR IR T 6 -

WX E, FEFREEAAIREL, EEM A
(BRI, HY) ERERARAE G, MEAR =N
(BEz071) EFIARS - AIeHIZ IR RS B A
DA I SRR B, TR XSGR KB — Mk
PRl AR T R T PRI BT CRUESE T e 2
TR BRI A -

FATRT LUE BAREE SCHE P RAE N R ST I B
BRI BIRENE; (HRaXHE, BN BB i
HMEEHLR A AN A 7] B2 B HOIT IR 5 AP 2R 4L
BRI H WS AR ENE R CRINER - TiZEF 8
HAR LRI -

WU LR, XRMEH SRR . WIEE 2 DR ET
WHFHITFIR—T7 (Emacs RIKAF, Skl FELZZ LI G
SRt L UL RS KRR BT 2B IRE) - TR B T%

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Rather, it's the demonstrated awfulness of conventional
mechanisms for defining the goals of software projects.

One of the best-known folk theorems of software
engineering is that 60% to 75% of conventional software projects
either are never completed or are rejected by their intended users.
If that range is anywhere near true (and I've never met a manager
of any experience who disputes it) then more projects than not are
being aimed at goals that are either (a) not realistically attainable,
or (b) just plain wrong.

This, more than any other problem, is the reason that in
today's software engineering world the very phrase " “management
committee" is likely to send chills down the hearer's spine—even
(or perhaps especially) if the hearer is a manager. The days when
only programmers griped about this pattern are long past; Dilbert
cartoons hang over executives' desks now.

Our reply, then, to the traditional software development
manager, is simple—if the open-source community has really
underestimated the value of conventional management, why do so
many of you display contempt for your own process?

Once again the example of the open-source community
sharpens this question considerably—because we have fun doing
what we do. Our creative play has been racking up technical,
market-share, and mind-share successes at an astounding rate.
We're proving not only that we can do better software, but that joy
is an asset.

Two and a half years after the first version of this essay, the
most radical thought I can offer to close with is no longer a vision
of an open-source—dominated software world; that, after all, looks
plausible to a lot of sober people in suits these days.

49

GOl ST H B AR L3RI H R AL -

B TR — e 44 I AR E S 60268 7520H01%
G H B 2N ER0YL, BEAMEHASRT - 2R
RXMEEEAMESIEL (BNFBEE - M EERE
HERESXA) | oG SR EERER T () B
HiAARIMEL (b) HEEEIEREIR-

EASREGEIRENERE, “BHERE"X ML
FHLEERS—ER (B LH) AW EaE
fi; DX — S R e AR R AR B R AR - AR
AERFAMEEXI-URNH TREESE T #/RARH
TEAISHE L TEHRNRL .

FATS E T 2 2R A, AR 2 AR T S ——An
FIFEH X BRI, TEREHERNE, T AFRIX A%
NRI TR B TR RREY

TR DX BB PR B X A RIS B T ——[R D 3T
RS « TATOFIBER CESAR ~ 15 5 EME
A b DR B3 RIS 0 B o AT TAEUE A AN BATTRT LA
T A S IF R, T B AR & — M Bt 7 -

X ER IR EF)E, PR ML B il
HIRL S AN — DIHRGIREF EF, AR, SRR
ZFMIRERIANE KRB RAEATREN T -

*[FEEDR/RARFEREE S TERSIAY, ZAIIFEIZEARN
GURHE H 2 BT -

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Rather, I want to suggest what may be a wider lesson about
software, (and probably about every kind of creative or
professional work). Human beings generally take pleasure in a
task when it falls in a sort of optimal-challenge zone; not so easy
as to be boring, not too hard to achieve. A happy programmer is
one who is neither underutilized nor weighed down with ill-
formulated goals and stressful process friction. Enjoyment predicts
efficiency.

Relating to your own work process with fear and loathing
(even in the displaced, ironic way suggested by hanging up Dilbert
cartoons) should therefore be regarded in itself as a sign that the
process has failed. Joy, humor, and playfulness are indeed assets;
it was not mainly for the alliteration that [wrote of "happy hordes"
above, and it is no mere joke that the Linux mascot is a cuddly,
neotenous penguin.

It may well turn out that one of the most important effects of
open source's success will be to teach us that play is the most
economically efficient mode of creative work..

50

TR, FARSEH — BT Z AT PRl Z,
(BN TR —FOLE s R R TAE) - AT
— A — AR S5 A T — e = R VO AR (3 R
AERFETETIEM, AEARME T AL — P RRTRE
Fr 5L — A BRISCE BOR BRI A B IR B € 1) H AR AL
REEEBRAT BN « SRENEAR K -

DERARFNR RIS IR B CR LIRS (RIS &5
RS B X PG E AR T =) BRI R & NOZ
EE—DERRRMTHIES - WOR - WBL, AR 2 EIE
HE; BAE LESFHRT PRI — EEZAZE N T
¥, Linux KIS EYE—DARR - FESMAER ARG A
PURDIR -

LERIRFIRER, THIRA I R A — D 5 E A 2
B E BAVRBZ ST TIERZZHT ERA RS

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Epilog: Netscape Embraces the Bazaar

It's a strange feeling to realize you're helping make history....

On January 22 1998, approximately seven months after I first
published The Cathedral and the Bazaar, Netscape
Communications, Inc. announced plans to give away the source
for Netscape Communicator. I had had no clue this was going to
happen before the day of the announcement.

Eric Hahn, executive vice president and chief technology
officer at Netscape, emailed me shortly afterwards as follows:
"'On behalf of everyone at Netscape, I want to thank you for
helping us get to this point in the first place. Your thinking and
writings were fundamental inspirations to our decision."

The following week I flew out to Silicon Valley at Netscape's
invitation for a day-long strategy conference (on 4 Feb 1998) with
some of their top executives and technical people. We designed
Netscape's source-release strategy and license together.

A few days later I wrote the following:

Netscape is about to provide us with a large-scale, real-world
test of the bazaar model in the commercial world. The open-
source culture now faces a danger; if Netscape's execution doesn't
work, the open-source concept may be so discredited that the
commercial world won't touch it again for another decade.

On the other hand, this is also a spectacular opportunity.
Initial reaction to the move on Wall Street and elsewhere has been
cautiously positive. We're being given a chance to prove ourselves,
too. If Netscape regains substantial market share through this
move, it just may set off a long-overdue revolution in the software
industry.

51

JZ18 T MR
S5 ETT, R —FERRE......

1998 F 1 H 22 H, KIEERAR 7 REAEMTE" £
AR, MEBEHATIEAR TR RN 2SR T
Ko EXNEAMZ B — S FEE X EERT S .
R o HE, Hammﬁauﬁéﬁﬁﬁka FEIRZ JGAN
AREFIXFE—F MR “FAEREN R NS
A LB BB TER TiX—2 - BRRERGIENBATRR
NEb b o e)= R

BRI ERIEZ M REE0E CEIES, i1
FEETFARN AT T — MRS E S (1998 £F 2
H4H) « B—EHE T MR L 1T RIF&Z R

FRGE:
EHE AT — A i 5 B et i S
R ISR . ORI — ek A

FIHEEER T, FRURRERESSERE, BREZE
P+ ENEAS B E -

AT, EWE—DEFRINLE - SRR EARR T
HIRIP IR TR R AR - BT B2 — MR B AL
o m%ﬂapLﬁ—éﬁﬁﬁ TG HE, B2 il
%z G b S R B AR

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

The next year should be a very instructive and interesting
time.

And indeed it was. As I write in mid-2000, the development
of what was later named Mozilla has been only a qualified
success. It achieved Netscape's original goal, which was to deny
Microsoft a monopoly lock on the browser market. It has also
achieved some dramatic successes (notably the release of the next-
generation Gecko rendering engine).

However, it has not yet garnered the massive development
effort from outside Netscape that the Mozilla founders had
originally hoped for. The problem here seems to be that for a long
time the Mozilla distribution actually broke one of the basic rules
of the bazaar model; it didn't ship with something potential
contributors could easily run and see working. (Until more than a
year after release, building Mozilla from source required a license
for the proprietary Motif library.)

Most negatively (from the point of view of the outside
world) the Mozilla group didn't ship a production-quality browser
for two and a half years after the project launch—and in 1999 one
of the project's principals caused a bit of a sensation by resigning,
complaining of poor management and missed opportunities.
“"Open source," he correctly observed, "'is not magic pixie dust."

And indeed it is not. The long-term prognosis for Mozilla
looks dramatically better now (in November 2000) than it did at
the time of Jamie Zawinski's resignation letter—in the last few
weeks the nightly releases have finally passed the critical
threshold to production usability. But Jamie was right to point out
that going open will not necessarily save an existing project that
suffers from ill-defined goals or spaghetti code or any of the
software engineering's other chronic ills. Mozilla has managed to

52

E TR —ELRERSELEREER -

AR . HIREAE 2000 AR, 5k %4
7y Mozilla HFF & 3 H A SE R FAS IR - C©iRE] T M5
) HAR——BE LB B 2 T S) BT B e « e ik E]
TEEEMRT) OUHRE T —1U Gecko F 5 21 4
fii) -

R, eilkiE A EEIMFEZIMY - Mozilla 81701
EYIFTIAE R AR - X BRI, AERKH
—EIA B, Mozella B ARSLRR L BEA T i BB —
FEARN]; CREZ MBS 5%] IR Zis T
IRMERLARTE - (ERIRME—FZL, %iE Mozzila T2
— P EETFREIMotif FERTHHAR -)

RIEREE (NSMEBHE R AERE) . Mozilla FFA
FET B 06 5 PR B & A H— > ol o & HO3 i 2
MmEAE 1999, — Ui HETIERGE T AN
. MIAREEAT), BRRENL. “FFR", MIERHBTS
i, “IEESEA S

FRSEANEE . BIZE (20004E 11 H) Mozilla Wi H &3 &
HIRE, RS WA . BRI EE R T X
FIER S ——Bol LB EARER A ST T A
TR REE IR - (HREAKREIE E T e PR &I A~ —
ESHR— BIREEEL - SimiDHmEs: - AEHEHH LT

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

provide an example simultaneously of how open source can
succeed and how it could fail.

In the mean time, however, the open-source idea has scored
successes and found backers elsewhere. Since the Netscape
release we've seen a tremendous explosion of interest in the open-
source development model, a trend both driven by and driving the
continuing success of the Linux operating system. The trend
Mozilla touched off is continuing at an accelerating rate.

53

FRREBMRKC AT E - Mozilla BN T — P RIEERTIRE
WNART A ZH A AR] SR LA 22 451

IR S HE[RIRT, FRHRAEL S DR AR TH T3S T BIhfise
o AMNMRAITRIAM LR, FATHBE T3 TR A
2480 R KE R G K — — Linux -1 RS AOFF SR Th B 2 3K
B HEIES 1 - 3XANH Mogzilla filt & #0E0 IE A8 I3 B
B %

* [FEE] REMREERRENMTNERE, JLERN
Mozilla F¥ K E AR Firefox FGER T IR IX IEER - Thomas
Friedman £ 2005 FER55E+ (The World is Flat) H3EMF51H
IR RN Z—, FRM SRR RS AR T BT
ik

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

Notes

[JB] In Programing Pearls, the noted computer-science
aphorist Jon Bentley comments on Brooks's observation with " If
you plan to throw one away, you will throw away two.". He is
almost certainly right. The point of Brooks's observation, and
Bentley's, isn't merely that you should expect first attempt to be
wrong, it's that starting over with the right idea is usually more
effective than trying to salvage a mess.

[QR] Examples of successful open-source, bazaar
development predating the Internet explosion and unrelated to the
Unix and Internet traditions have existed. The development of the
info-Zip compression utility during 1990—x1992, primarily for
DOS machines, was one such example. Another was the RBBS
bulletin board system (again for DOS), which began in 1983 and
developed a sufficiently strong community that there have been
fairly regular releases up to the present (mid-1999) despite the
huge technical advantages of Internet mail and file-sharing over
local BBSs. While the info-Zip community relied to some extent
on Internet mail, the RBBS developer culture was actually able to
base a substantial on-line community on RBBS that was
completely independent of the TCP/IP infrastructure.

[CV] That transparency and peer review are valuable for
taming the complexity of OS development turns out, after all, not
to be a new concept. In 1965, very early in the history of time-
sharing operating systems, Corbat6 and Vyssotsky, co-designers of
the Multics operating system, wrote

It is expected that the Multics system will be published when
it is operating substantially... Such publication is desirable for two
reasons: First, the system should withstand public scrutiny and

54

criticism volunteered by interested readers; second, in an age of
increasing complexity, it is an obligation to present and future
system designers to make the inner operating system as lucid as
possible so as to reveal the basic system issues.

[JH] John Hasler has suggested an interesting explanation for
the fact that duplication of effort doesn't seem to be a net drag on
open-source development. He proposes what I'll dub ""Hasler's
Law": the costs of duplicated work tend to scale sub-qadratically
with team size—that is, more slowly than the planning and
management overhead that would be needed to eliminate them.

This claim actually does not contradict Brooks's Law. It may
be the case that total complexity overhead and vulnerability to
bugs scales with the square of team size, but that the costs from
duplicated work are nevertheless a special case that scales more
slowly. It's not hard to develop plausible reasons for this, starting
with the undoubted fact that it is much easier to agree on
functional boundaries between different developers' code that will
prevent duplication of effort than it is to prevent the kinds of
unplanned bad interactions across the whole system that underly
most bugs.

The combination of Linus's Law and Hasler's Law suggests
that there are actually three critical size regimes in software
projects. On small projects (I would say one to at most three
developers) no management structure more elaborate than picking
a lead programmer is needed. And there is some intermediate
range above that in which the cost of traditional management is
relatively low, so its benefits from avoiding duplication of effort,
bug-tracking, and pushing to see that details are not overlooked
actually net out positive.

Above that, however, the combination of Linus's Law and
Hasler's Law suggests there is a large-project range in which the

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

costs and problems of traditional management rise much faster
than the expected cost from duplication of effort. Not the least of
these costs is a structural inability to harness the many-eyeballs
effect, which (as we've seen) seems to do a much better job than
traditional management at making sure bugs and details are not
overlooked. Thus, in the large-project case, the combination of
these laws effectively drives the net payoff of traditional
management to zero.

[HBS] The split between Linux's experimental and stable
versions has another function related to, but distinct from, hedging
risk. The split attacks another problem: the deadliness of
deadlines. When programmers are held both to an immutable
feature list and a fixed drop-dead date, quality goes out the
window and there is likely a colossal mess in the making. [am
indebted to Marco lansiti and Alan MacCormack of the Harvard
Business School for showing me me evidence that relaxing either
one of these constraints can make scheduling workable.

One way to do this is to fix the deadline but leave the feature
list flexible, allowing features to drop off if not completed by
deadline. This is essentially the strategy of the "stable" kernel
branch; Alan Cox (the stable-kernel maintainer) puts out releases
at fairly regular intervals, but makes no guarantees about when
particular bugs will be fixed or what features will beback-ported
from the experimental branch.

The other way to do this is to set a desired feature list and
deliver only when it is done. This is essentially the strategy of the
"experimental" kernel branch. De Marco and Lister cited research
showing that this scheduling policy ("wake me up when it's done")
produces not only the highest quality but, on average, shorter
delivery times than either "realistic" or "aggressive" scheduling.

I have come to suspect (as of early 2000) that in earlier

55

versions of this essay I severely underestimated the importance of
the "wake me up when it's done" anti-deadline policy to the open-
source community's productivity and quality. General experience
with the rushed GNOME 1.0 release in 1999 suggests that
pressure for a premature release can neutralize many of the quality
benefits open source normally confers.

It may well turn out to be that the process transparency of
open source is one of three co-equal drivers of its quality, along
with "wake me up when it's done" scheduling and developer self-
selection.

[SU] It's tempting, and not entirely inaccurate, to see the
core-plus-halo organization characteristic of open-source projects
as an Internet-enabled spin on Brooks's own recommendation for
solving the N-squared complexity problem, the "surgical-team"
organization—but the differences are significant. The constellation
of specialist roles such as "code librarian" that Brooks envisioned
around the team leader doesn't really exist; those roles are
executed instead by generalists aided by toolsets quite a bit more
powerful than those of Brooks's day. Also, the open-source culture
leans heavily on strong Unix traditions of modularity, APIs, and
information hiding—none of which were elements of Brooks's
prescription.

[RJ] The respondent who pointed out to me the effect of
widely varying trace path lengths on the difficulty of
characterizing a bug speculated that trace-path difficulty for
multiple symptoms of the same bug varies "exponentially" (which
I take to mean on a Gaussian or Poisson distribution, and agree
seems very plausible). If it is experimentally possible to get a
handle on the shape of this distribution, that would be extremely
valuable data. Large departures from a flat equal-probability
distribution of trace difficulty would suggest that even solo

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

developers should emulate the bazaar strategy by bounding the
time they spend on tracing a given symptom before they switch to
another. Persistence may not always be a virtue...

[IN] An issue related to whether one can start projects from
zero in the bazaar style is whether the bazaar style is capable of
supporting truly innovative work. Some claim that, lacking strong
leadership, the bazaar can only handle the cloning and
improvement of ideas already present at the engineering state of
the art, but is unable to push the state of the art. This argument
was perhaps most infamously made by the Halloween Documents,
two embarrassing internal Microsoft memoranda written about the
open-source phenomenon. The authors compared Linux's
development of a Unix-like operating system to *“chasing
taillights", and opined ""(once a project has achieved "parity" with
the state-of-the-art), the level of management necessary to push
towards new frontiers becomes massive."

There are serious errors of fact implied in this argument. One
is exposed when the Halloween authors themseselves later observe
that ““often [...] new research ideas are first implemented and
available on Linux before they are available / incorporated into
other platforms."

If we read ““open source" for *'Linux", we see that this is far
from a new phenomenon. Historically, the open-source
community did not invent Emacs or the World Wide Web or the
Internet itself by chasing taillights or being massively managed—
and in the present, there is so much innovative work going on in
open source that one is spoiled for choice. The GNOME project
(to pick one of many) is pushing the state of the art in GUIs and
object technology hard enough to have attracted considerable
notice in the computer trade press well outside the Linux
community. Other examples are legion, as a visit to Freshmeat on

56

any given day will quickly prove.

But there is a more fundamental error in the implicit
assumption that the cathedral model (or the bazaar model, or any
other kind of management structure) can somehow make
innovation happen reliably. This is nonsense. Gangs don't have
breakthrough insights—even volunteer groups of bazaar anarchists
are usually incapable of genuine originality, let alone corporate
committees of people with a survival stake in some status quo
ante. Insight comes from individuals. The most their surrounding
social machinery can ever hope to do is to be responsive to
breakthrough insights—to nourish and reward and rigorously test
them instead of squashing them.

Some will characterize this as a romantic view, a reversion to
outmoded lone-inventor stereotypes. Not so; I am not asserting
that groups are incapable of developing breakthrough insights
once they have been hatched; indeed, we learn from the peer-
review process that such development groups are essential to
producing a high-quality result. Rather I am pointing out that
every such group development starts from—is necessarily sparked
by—one good idea in one person's head. Cathedrals and bazaars
and other social structures can catch that lightning and refine it,
but they cannot make it on demand.

Therefore the root problem of innovation (in software, or
anywhere else) is indeed how not to squash it—but, even more
fundamentally, it is how to grow lots of people who can have
insights in the first place.

To suppose that cathedral-style development could manage
this trick but the low entry barriers and process fluidity of the
bazaar cannot would be absurd. If what it takes is one person with
one good idea, then a social milieu in which one person can
rapidly attract the cooperation of hundreds or thousands of others

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

with that good idea is going inevitably to out-innovate any in
which the person has to do a political sales job to a hierarchy
before he can work on his idea without risk of getting fired.

And, indeed, if we look at the history of software innovation
by organizations using the cathedral model, we quickly find it is
rather rare. Large corporations rely on university research for new
ideas (thus the Halloween Documents authors' unease about
Linux's facility at coopting that research more rapidly). Or they
buy out small companies built around some innovator's brain. In
neither case is the innovation native to the cathedral culture;
indeed, many innovations so imported end up being quietly
suffocated under the "massive level of management" the
Halloween Documents' authors so extol.

That, however, is a negative point. The reader would be
better served by a positive one. I suggest, as an experiment, the
following:

e Pick a criterion for originality that you believe you
can apply consistently. If your definition is "I know it
when I see it", that's not a problem for purposes of this test.

e Pick any closed-source operating system competing
with Linux, and a best source for accounts of current
development work on it.

e Watch that source and Freshmeat for one month.
Every day, count the number of release announcements on
Freshmeat that you consider “original' work. Apply the
same definition of "original' to announcements for that
other OS and count them.

e Thirty days later, total up both figures.

The day I wrote this, Freshmeat carried twenty-two release
announcements, of which three appear they might push state of the

57

art in some respect, This was a slow day for Freshmeat, but I will
be astonished if any reader reports as many as three likely
innovations a month in any closed-source channel.

[EGCS] We now have history on a project that, in several
ways, may provide a more indicative test of the bazaar premise
than fetchmail; EGCS, the Experimental GNU Compiler System.

This project was announced in mid-August of 1997 as a
conscious attempt to apply the ideas in the early public versions of
The Cathedral and the Bazaar. The project founders felt that the
development of GCC, the Gnu C Compiler, had been stagnating.
For about twenty months afterwards, GCC and EGCS continued
as parallel products—both drawing from the same Internet
developer population, both starting from the same GCC source
base, both using pretty much the same Unix toolsets and
development environment. The projects differed only in that
EGCS consciously tried to apply the bazaar tactics I have
previously described, while GCC retained a more cathedral-like
organization with a closed developer group and infrequent
releases.

This was about as close to a controlled experiment as one
could ask for, and the results were dramatic. Within months, the
EGCS versions had pulled substantially ahead in features; better
optimization, better support for FORTRAN and C++. Many
people found the EGCS development snapshots to be more
reliable than the most recent stable version of GCC, and major
Linux distributions began to switch to EGCS.

In April of 1999, the Free Software Foundation (the official
sponsors of GCC) dissolved the original GCC development group
and officially handed control of the project to the the EGCS
steering team.

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

[SP] Of course, Kropotkin's critique and Linus's Law raise
some wider issues about the cybernetics of social organizations.
Another folk theorem of software engineering suggests one of
them; Conway's Law—commonly stated as *'If you have four
groups working on a compiler, you'll get a 4-pass compiler". The
original statement was more general: *Organizations which
design systems are constrained to produce designs which are
copies of the communication structures of these organizations."
We might put it more succinctly as *"The means determine the
ends", or even " Process becomes product".

It is accordingly worth noting that in the open-source
community organizational form and function match on many
levels. The network is everything and everywhere: not just the
Internet, but the people doing the work form a distributed, loosely
coupled, peer-to-peer network that provides multiple redundancy
and degrades very gracefully. In both networks, each node is
important only to the extent that other nodes want to cooperate
with it.

The peer-to-peer part is essential to the community's
astonishing productivity. The point Kropotkin was trying to make
about power relationships is developed further by the 'SNAFU
Principle': **True communication is possible only between equals,
because inferiors are more consistently rewarded for telling their
superiors pleasant lies than for telling the truth." Creative
teamwork utterly depends on true communication and is thus very
seriously hindered by the presence of power relationships. The
open-source community, effectively free of such power
relationships, is teaching us by contrast how dreadfully much they
cost in bugs, in lowered productivity, and in lost opportunities.

Further, the SNAFU principle predicts in authoritarian
organizations a progressive disconnect between decision-makers

58

and reality, as more and more of the input to those who decide
tends to become pleasant lies. The way this plays out in
conventional software development is easy to see; there are strong
incentives for the inferiors to hide, ignore, and minimize
problems. When this process becomes product, software is a
disaster.

Bibliography

I quoted several bits from Frederick P. Brooks's classic The
Mythical Man-Month because, in many respects, his insights have
yet to be improved upon. I heartily recommend the 25th
Anniversary edition from Addison-Wesley (ISBN 0-201-83595-9),
which adds his 1986 **No Silver Bullet" paper.

The new edition is wrapped up by an invaluable 20-years-
later retrospective in which Brooks forthrightly admits to the few
judgements in the original text which have not stood the test of
time. I first read the retrospective after the first public version of
this essay was substantially complete, and was surprised to
discover that Brooks attributed bazaar-like practices to Microsoft!
(In fact, however, this attribution turned out to be mistaken. In
1998 we learned from the Halloween Documents that Microsoft's
internal developer community is heavily balkanized, with the kind
of general source access needed to support a bazaar not even truly
possible.)

Gerald M. Weinberg's The Psychology Of Computer
Programming (New York, Van Nostrand Reinhold 1971)
introduced the rather unfortunately-labeled concept of *“egoless
programming". While he was nowhere near the first person to

The Cathedral and the Bazaar &30 SE9G ZE HEAR v1.1

realize the futility of the "*principle of command", he was
probably the first to recognize and argue the point in particular
connection with software development.

Richard P. Gabriel, contemplating the Unix culture of the
pre-Linux era, reluctantly argued for the superiority of a primitive
bazaar-like model in his 1989 paper ""LISP: Good News, Bad
News, and How To Win Big". Though dated in some respects, this
essay is still rightly celebrated among LISP fans (including me). A
correspondent reminded me that the section titled **Worse Is
Better" reads almost as an anticipation of Linux. The paper is
accessible on the World Wide Web at
http://www.naggum.no/worse-is-better.html.

De Marco and Lister's Peopleware: Productive Projects and
Teams (New York; Dorset House, 1987; ISBN 0-932633-05-6) is
an underappreciated gem which I was delighted to see Fred
Brooks cite in his retrospective. While little of what the authors
have to say is directly applicable to the Linux or open-source
communities, the authors' insight into the conditions necessary for
creative work is acute and worthwhile for anyone attempting to
import some of the bazaar model's virtues into a commercial
context.

Finally, I must admit that I very nearly called this essay
""The Cathedral and the Agora", the latter term being the Greek for
an open market or public meeting place. The seminal *“agoric
systems" papers by Mark Miller and Eric Drexler, by describing
the emergent properties of market-like computational ecologies,
helped prepare me to think clearly about analogous phenomena in
the open-source culture when Linux rubbed my nose in them five
years later. These papers are available on the Web at
http://www.agorics.com/agorpapers.html.

59

Acknowledgements

This essay was improved by conversations with a large
number of people who helped debug it. Particular thanks to Jeff
Dutky , who suggested the **debugging is parallelizable"
formulation, and helped develop the analysis that proceeds from it.
Also to Nancy Lebovitz for her suggestion that [emulate
Weinberg by quoting Kropotkin. Perceptive criticisms also came
from Joan Eslinger and Marty Franz of the General Technics list.
Glen Vandenburg pointeed out the importance of self-selection in
contributor populations and suggested the fruitful idea that much
development rectifies "bugs of omission'; Daniel Upper suggested
the natural analogies for this. I'm grateful to the members of
PLUG, the Philadelphia Linux User's group, for providing the first
test audience for the first public version of this essay. Paula
Matuszek enlightened me about the practice of software
management. Phil Hudson reminded me that the social
organization of the hacker culture mirrors the organization of its
software, and vice-versa. John Buck pointed out that MATLAB
makes an instructive parallel to Emacs. Russell Johnston brought
me to consciousness about some of the mechanisms discussed in
“"How Many Eyeballs Tame Complexity." Finally, Linus
Torvalds's comments were helpful and his early endorsement very
encouraging.

	The Cathedral and the Bazaar
	大教堂和市集
	The Mail Must Get Through
	邮件必须通过
	The Importance of Having Users
	用户的重要性
	Release Early, Release Often
	
早发布、常发布
	How Many Eyeballs Tame Complexity
	要多少个眼球来驯服复杂度
	When Is a Rose Not a Rose?
	画虎莫类犬
	Popclient becomes Fetchmail
	Popclient 变成了 Fetchmail
	Fetchmail Grows Up
	Fetchmail长大了
	A Few More Lessons from Fetchmail
	Fetchmail带来的其它几条经验
	Necessary Preconditions for the Bazaar Style
	市集风格的必要前提
	The Social Context of Open-Source Software
	开源软件的社会语境
	On Management and the Maginot Line

	关于管理和马其诺防线
	Epilog: Netscape Embraces the Bazaar
	后记：网景欢迎市集
	Notes
	Bibliography
	Acknowledgements

